

243 Jubug-ri, Yangji-myeon, Cheoin-gu, Yongin-si, Gyeonggi-do 449-822, Korea Tel: +82-31-323-6008 Fax: +82-31-323-6010 http://www.ltalab.com

EMC TEST REPORT

Dates of Tests: June 28 – July 03, 2018 Test Report S/N: LR500121811AI

Test Site: LTA Co., Ltd.

Model No.

NC-D4212R

APPLICANT

IDIS CO., LTD.

Equipment Name : Network Camera

Manufacturer : IDIS CO., LTD.

Model name : NC-D4212R

Additional Model name : DC-D4212R, DC-D4212R-2.8mm, DC-D4212R 4.0mm,

DC-D4212R 2.8mm, NC-D4212R 2.8mm

Test Device Serial No.: : Identification

Directive : Electromagnetic Compatibility Directive 2014/30/EU

Rule Part(s) : EN 55032:2015

EN 50130-4:2011/A1:2014

EN 61000-3-2:2014 EN 61000-3-3:2013

Data of reissue : November 30, 2018

This test report is issued under the authority of:

The test was supervised by:

Young Kyu Shin, Technical Manager

Jin Ho Seo, Technical Manager

This test result only responds to the tested sample. It is not allowed to copy this report even partly without the allowance of the test laboratory. The report must not be used by the client to claim product certification, approval, or endorsement by NVLAP, NIST, or any agency of the Federal Government.

Revision	Date of issue	Test report No.	Description
0	06.07.2018	LR500121807H	Initial
1	19.10.2018	LR500121810S	Add Additional Models
2	30.11.2018	LR500121811AI	Add Additional Models (DC-D4212R 2.8mm, NC-D4212R 2.8mm)

TABLE OF CONTENTS

1. General infor	mation's	4
2. Information's	about test item	5
3. Test Report		7
3.1 Summa	ry of tests	7
3.2 EMISSI	ON	8
3.2.1 C	onducted emissions	8
3.2.2 R	adiated Emission	12
3.2.3 H	armonic Current (AC power input port)	17
3.2.4 Vo	oltage Variation and Flicking (AC power input port)	18
3.3 IMMUN	NITY	19
3.3.1 E	lectrostatic Discharge	19
3.3.2 R	F Electromagnetic Field	21
3.3.3 E	lectrical fast transients	22
3.3.4 St	ırge	23
3.3.5 C	onducted disturbances, induced by radio-frequency fields	24
	fains supply voltage dips, short interruptions	
3.3.7 M	lains supply voltage variations	26
APPENDIX A	TEST EQUIPMENT AND ANCILLARIES USED FOR TESTS	27
APPENDIX B	PERFORMANCE CRITERIA	30
ADDENIDIY C	DUOTOCD A DUC	22

1. General information's

1-1 Test Performed

Company name : LTA Co., Ltd.

Address : 243, Jubug-ri, Yangji-Myeon, Yongin-Si, Kyunggi-Do, Korea. 449-822

 Web site
 : http://www.ltalab.com

 E-mail
 : chahn@ltalab.com

 Telephone
 : +82-31-323-6008

 Facsimile
 +82-31-323-6010

Quality control in the testing laboratory is implemented as per ISO/IEC 17025 which is the "General requirements for the competents of calibration and testing laboratory".

1-2 Accredited agencies

LTA Co., Ltd. is approved to perform EMC testing by the following agencies:

Agency	Country	Accreditation No.	Validity	Reference	
NVLAP	U.S.A	200723-0	2019-09-30	ECT accredited Lab.	
RRA	KOREA	KR0049	-	EMC accredited Lab.	
FCC	U.S.A	649054	2019-04-13	FCC CAB	
	JAPAN	C-4948,	2020-09-10		
VCCI		T-2416,	2020-09-10	VCCI registration	
VCCI		R-4483(10 m),	2020-10-15	VCCI registration	
		G-847	2018-12-13		
IC	CANADA	5799A-2	2019-03-15	IC filing	
KOLAS	KOREA	NO.551	2021-08-20	KOLAS accredited Lab.	

2. Information's about test item

2-1 Client/ Manufacturer

Company name : IDIS CO., LTD.

Address : 8-10, TECHNO 3-RO, YUSEONG-GU, DAEJEON, KOREA

Telephone / Facsimile : +82-31-723-5205 / +82-31-723-5108

Factory 1

Company name IDIS CO., LTD.

Address 8-10, TECHNO 3-RO, YUSEONG-GU, DAEJEON, KOREA

2-2 Equipment Under Test (EUT)

Class : A

Equipment Name : Network Camera

Model name : NC-D4212R

Additional Model name : DC-D4212R, DC-D4212R-2.8mm, DC-D4212R 4.0mm, DC-D4212R 2.8mm,

NC-D4212R 2.8mm

NC-D4212R is basic model, which was tested.

Additional Models are identical to NC-D4212R except for Model Name, marketing

purpose.

Serial number : Identification

Date of receipt : June 12, 2018

EUT condition : Pre-production, not damaged

Interface ports : LAN

Power rating : DC 53 V

Modulator : -

Crystal/Oscillator(s) : -

Firmware version : XXXX

2-3 Modification

-NONE

2-4 Model Specification

-NONE

2-5 Test conditions

Temp. / Humid. / Pressure : +(23 - 25) °C / (49 - 50) % R.H. / (100.1) kPa

Tested Model : NC-D4212R
Test mode : Rec mode

Power supply : AC 230 V, 50 Hz

<u>2-5 EUT</u>

Equipment	Model No.	Serial No.	Manufacturer	
Network Camera	NC-D4212R	N/A	IDIS CO., LTD.	

2-6 Accessary

Equipment		Model No.	Serial No.	Manufacturer	
	Notebook P56		N/A	HANSUNG	
	PoE Injector	NEXT-PEG4806JT	N/A	NEXT NETWORK	

2-7 Cable List

From		То	Length	Shi	ielding	
Type	I/O Port	Type I/O Port		(m)	Cable	backshell
EUT	LAN	РоЕ	LAN	3.0	NO	Plastic
PoE Injector	LAN	Notebook	LAN	3.0	NO	Plastic
	AC IN	AC Power Source	3 Pin AC Line	1.5	NO	Plastic
Notebook	DC IN	Adapter	DC OUT	2.0	NO	Plastic

3. Test Report

3.1 Summary of tests

Parameter	Applied Standard	Status				
I. Emission						
Radiated Emission	EN 55032:2015	С				
Conducted Emission	EN 55032:2015	С				
Harmonic Current Emission	EN 61000-3-2:2014	NA Note 3				
Voltage Fluctuations and Flicker	EN 61000-3-3:2013	NA Note 3				
	II. Immunity					
Electrostatic Discharge	EN 61000-4-2:2009	С				
RF Electromagnetic field	EN 61000-4-3:2006/A1:2008/A2:2010	С				
Fast Transients Common mode	EN 61000-4-4:2012	С				
Surges, line to line and line to ground	EN 61000-4-5:2014	NA Note 3				
RF common mode	EN 61000-4-6:2014/AC:2015	С				
Voltage dips and Interruptions	EN 61000-4-11:2004/A1:2017	NA Note 3				
Main supply voltage variations	EN 50130-4:2011/A1:2014	NA Note 3				

Note 1: C=Complies NC=Not Complies NT=Not Tested NA=Not Applicable

Note 2: The data in this test report are traceable to the national or international standards.

Note 3: Test was not conducted because EUT used PoE Power.

3.2 EMISSION

3.2.1 Conducted emissions

Definition:

The test assesses the ability of the EUT to limit its internal noise from being present on the AC mains Power In/Output ports.

We were performed the test according to LTA procedure LTA-QI-04.

Measurement Frequency range : 150 kHz – 30 MHz Test method : EN 55032:2015

Measurement RBW : 9 kHz

Test mode : Rec mode
Result : Complies

Measurement Data:

- Refer to the Next page (Maximum emission configuration)

A sample calculation:

COR. F (correction factor)= LISN Insertion loss + Cable loss + Pulse Limiter Factors

Emission Level= meter reading + COR.F

Limits for conducted disturbance at the mains ports of class A ITE

Frequency Range	Quasi-peak	Average
(0.15 - 0.5) MHz	79 dBuV	66 dBuV
(0.5 – 30) MHz	73 dBuV	60 dBuV

Note: The limits will decrease with the frequency logarithmically within 0.15MHz to 0.5MHz

Limits for conducted disturbance at the mains ports of class B ITE

Frequency Range	Quasi-peak	Average
(0.15 – 0.5) MHz	(66 – 56) dBuV	(56 - 46) dBuV
(0.5 – 5) MHz	56 dBuV	46 dBuV
(5 – 30) MHz	60 dBuV	50 dBuV

Note: The limits will decrease with the frequency logarithmically within 0.15 MHz to 0.5 MHz

Limits of conducted common mode (asymmetric mode) disturbance at telecommunication ports in the frequency range 0.15 MHz to 30 MHz for class A equipment

Engagement Dongo	Voltage	e limits	Current limits		
Frequency Range	Quasi-peak	Quasi-peak Average		Average	
(0.15 – 0.5) MHz	(97 – 87) dBuV	(84 – 74) dBuV	(53 – 43) dBuV	(40 – 30) dBuV	
(0.5 – 30) MHz	87 dBuV	74 dBuV	43 dBuV	30 dBuV	

Note 1: The limits decrease linearly with the logarithm of the frequency in the range 0.15 MHz to 0.5 MHz.

Note 2: The current and voltage disturbance limits are derived for use with an impedance stabilization network (ISN) which presents a common mode (asymmetric mode) impedance of 150Ω to the telecommunication port under test (conversion factor is $20 \log_{10} 150 / I = 44 dB$)

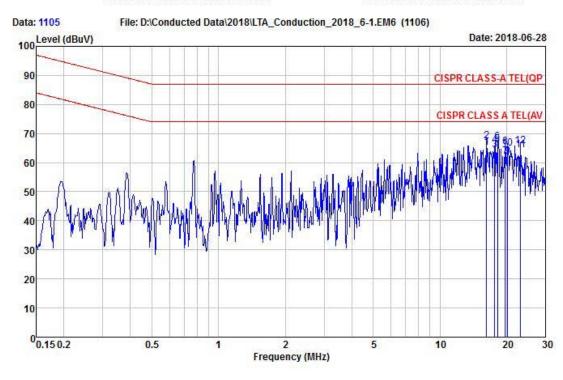
Limits of conducted common mode (asymmetric mode) disturbance at telecommunication ports in the frequency range 0.15 MHz to 30 MHz for class B equipment

Engagement Dongo	Voltage	e limits	Current limits		
Frequency Range	Quasi-peak Average		Quasi-peak Average		
(0.15 – 0.5) MHz	(84 – 74) dBuV	(74 – 64) dBuV	(40 – 30) dBuV	(30 – 20) dBuV	
(0.5 – 30) MHz	74 dBuV	64 dBuV	30 dBuV	20 dBuV	

Note 1: The limits decrease linearly with the logarithm of the frequency in the range 0.15 MHz to 0.5 MHz.

Note 2: The current and voltage disturbance limits are derived for use with an impedance stabilization network (ISN) which presents a common mode (asymmetric mode) impedance of 150Ω to the telecommunication port under test (conversion factor is $20 \log_{10} 150 \text{/I} = 44 \text{ dB}$)

Conducted emissions (TEL_10 M)


4, Songjuro 236 Beon-gil, Yangji-myeon Cheoin-gu, Youngin-si, Gyeonggi-do 449-822 Korea Tel:+82-31-3236008,9

Fax:+82-31-3236010

EUT / Model No. : NC-D4212R Phase : TEL_10M

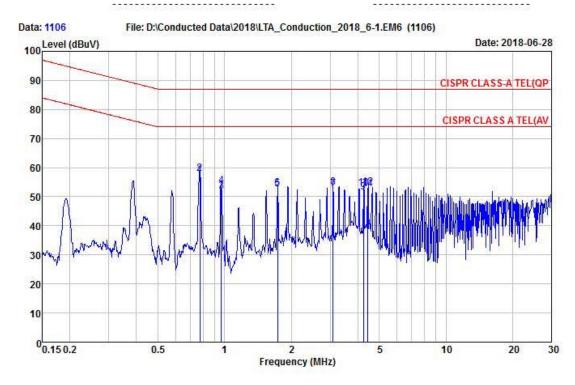
Test Mode Test Power : 230 / 50 : Rec mode

Temp. / Humi. : 25 / 50 Test Engineer : BANG Y H

Freq	RD QP	RD AV	C.F	Result QP	Result AV	Limit QP	Limit AV	Margin QP	Margin AV
MHz	dBuV	dBuV	dB	dBuV	dBuV	dBuV	dBuV	dB	dB
16.228	47.62	45.32	19.75	67.37	65.07	87.00	74.00	19.63	8.93
17.694	46.28	44.44	19.80	66.08	64.24	87.00	74.00	20.92	9.76
18.243	47.46	46.35	19.81	67.27	66.16	87.00	74.00	19.73	7.84
19.709	45.50	42.31	19.86	65.36	62.17	87.00	74.00	21.64	11.83
20.259	45.03	42.29	19.88	64.91	62.17	87.00	74.00	22.09	11.83
23.128	45.70	44.48	19.94	65.64	64.42	87.00	74.00	21.36	9.58

Remarks: C.F (Correction Factor) = Insertion loss + Cable loss + Pulse Limiter

Conducted emissions (TEL_100 M)


4, Songjuro 236 Beon-gil, Yangji-myeon Cheoin-gu, Youngin-si, Gyeonggi-do 449-822 Korea Tel:+82-31-3236008,9

Fax:+82-31-3236010

EUT / Model No. : NC-D4212R Phase : TEL_100M

Test Mode Test Power : 230 / 50 : Rec mode

Temp. / Humi. : 25 / 50 Test Engineer : BANG Y H

Freq	RD QP	RD AV	C.F	Result QP	AV	QP	AV	QP	AV
MHz	dBuV	dBuV	dB	dBuV	dBuV	dBuV	dBuV	dB	dB
0.773	38.41	37.87	19.41	57.82	57.28	87.00	74.00	29.18	16.72
0.966	34.33	32.51	19.40	53.73	51.91	87.00	74.00	33.27	22.09
1.739	33.73	33.32	19.30	53.03	52.62	87.00	74.00	33.97	21.38
3.091	33.98	33.37	19.24	53.22	52.61	87.00	74.00	33.78	21.39
4.250	33.53	32.27	19.26	52.79	51.53	87.00	74.00	34.21	22.47
4.443	33.87	33.30	19.26	53.13	52.56	87.00	74.00	33.87	21.44

Remarks: C.F (Correction Factor) = Insertion loss + Cable loss + Pulse Limiter

3.2.2 Radiated Emission

Definition:

The test assesses the ability of ancillary equipment to limit their internal noise from being radiated from the enclosure. We were performed the test according to LTA procedure LTA-QI-04.

Test method : EN 55032:2015

Measuring Distance : 10 m for below 1 GHz / 3 m for above 1 GHz

Measurement Frequency range : 30 MHz – 6 000 MHz

Measurement RBW : 120 kHz @ 10 m / 1 MHz @ 3 m

Test mode : Rec mode
Result : Complies

Measurement Data:

- Refer to the Next page (Maximum emission configuration)

- The highest internal source of an EUT is higher than 108 MHz, the measurement shall be made up to 6 GHz. (The highest internal source of an EUT : 6 GHz)

A sample calculation:

$$\label{eq:correction} \begin{split} & COR.\ F\ (correction\ factor) = Antenna\ factor + Cable\ loss-\ Amp.gain-\ Distance\ correction \\ & Emission\ Level = \ meter\ reading\ +\ COR.F \end{split}$$

Limit of 10 m for below 1 GHz

CLASS A

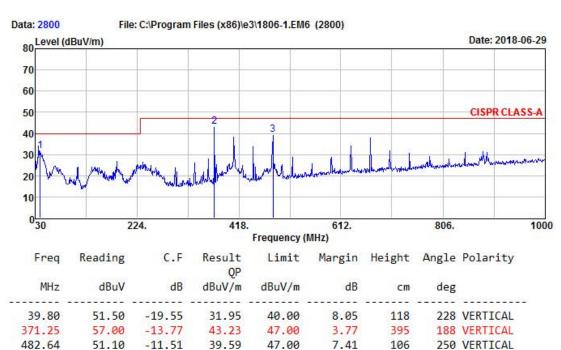
Frequency Range	Quasi-peak
(30 – 230) MHz	40 dBuV/m
(230 – 1 000) MHz	47 dBuV/m
CLASS B	
Frequency Range	Quasi-peak
(30 – 230) MHz	30 dBuV/m
(230 – 1 000) MHz	37 dBuV/m

Limit of 3m for above 1 GHz

CLASS A

Forman Paras	Average Limit @ 3m	Peak limit @ 3m			
Frequency Range	$(dB\mu V/m)$	$(dB\mu V/m)$			
(1 000 – 3 000) MHz	56	76			
(3 000 – 6 000) MHz	60	80			
NOTE:	The lower limit applies at the transition frequency.				
CLASS B					
Emaguanay Danga	Average Limit @ 3m	Peak limit @ 3m			
Frequency Range	$(dB\mu V/m)$	$(dB\mu V/m)$			
(1 000 – 3 000) MHz	50	70			
(3 000 – 6 000) MHz	54	74			
NOTE:	The lower limit applies at the transition frequency.				

Radiated Emission (Below 1 GHz) / V



4, Songiuro 236Beon-gil, yanggi-myeon, Yongin-si, Gyeonggi-do, Korea Tel:+82-31-3236008,9

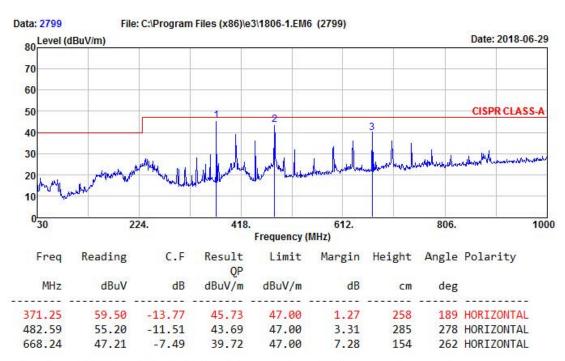
Fax: +82-31-3236010 www.ltalab.com

EUT/Model No.: NC-D4212R Temp/Humi: 23 / 49

Test Mode : Rec mode Tested by: BANG Y H

Remarks: C.F (Correction Factor) = Antenna factor + Cable loss - Preamp gain

Radiated Emission (Below 1 GHz) / H

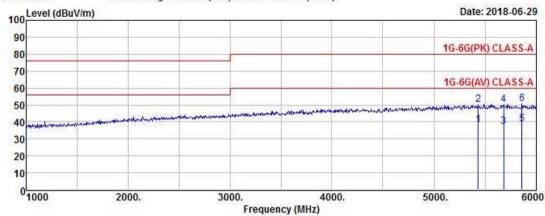


4, Songjuro 236Beon-gil, yanggi-myeon, Yongin-si, Gyeonggi-do, Korea Tel: +82-31-3236008,9

Fax: +82-31-3236010 www.ltalab.com

EUT/Model No.: NC-D4212R Temp/Humi: 23 / 49

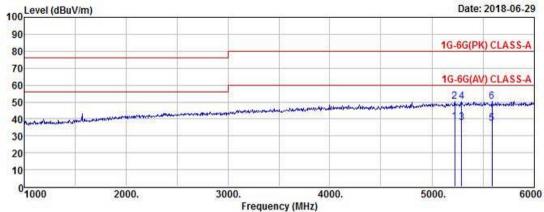
Test Mode : Rec mode Tested by: BANG Y H


Remarks: C.F (Correction Factor) = Antenna factor + Cable loss - Preamp gain

Radiated Emission (Above 1 GHz)

EUT/Model No.: NC-D4212R Temp/Humi: 23 / 49

Test Mode : Rec mode Tested by: BANG Y H



EUT/Model No.: NC-D4212R Temp/Humi: 23 / 49

Test Mode : Rec mode Tested by: BANG Y H

Data: 2801 File: C:\Program Files (x86)\e3\1806-1.EM6 (2801)

 Manufacture : IDIS CO., LTD.
 Test Date
 Temp.: Humidity [r]
 Indicator [r]
 Image: Image:

TEST mode: REC mode

Ver Data: 2802 Hor Data: 2801

Freq.(MHz)	Reading(PK)	Reading(AV)	C.F	Result(PK)	Result(AV)	Limit(PK)	Limit(AV)	Margin(PK)	Margin(AV)	Height	Angle	Polarity
MHz	dBu∀	dBu∨	dB	dBuV/m	dBuV/m	dBuV/m	dBuV/m	dB	dB	cm	deg	Hor/Ver
5220.0	36.4	24.7	15.49	51.85	40.21	80.0	60.0	28.15	19.79	100	71	Н
5285.0	36.5	24.2	15.61	52.12	39.78	80.0	60.0	27.88	20.22	100	195	Н
5585.0	36.2	23.0	16.01	52.17	39.00	80.0	60.0	27.83	21.00	100	335	Н
5430.0	36.1	24.0	15.89	52.01	39.88	80.0	60.0	27.99	20.12	100	155	٧
5680.0	36.1	23.3	16	52.06	39.28	80.0	60.0	27.94	20.72	100	322	٧
5860.0	36.8	24.4	16	52.75	40.40	80.0	60.0	27.25	19.60	100	249	٧

3.2.3 Harmonic Current (AC power input port)

Definition:

This part deals with the Limitation of harmonic currents injected into the public supply system.

We were performed the test according to LTA procedure LTA-QI-04.

Test method : EN 61000-3-2:2014

Test mode : - mode Rated power : - W

Result : Not Applicable

Measurement Data:

- Test was not conducted because EUT used PoE Power.

3.2.4 Voltage Variation and Flicking (AC power input port)

Definition:

This section is concerned with the limitation of voltage fluctuations and flicker impressed on the public low-voltage system.

We were performed the test according to LTA procedure LTA-QI-04.

Test method : EN 61000-3-3:2013

Test mode : - W

Result : Not Applicable

Measurement Data:

- Test was not conducted because EUT used PoE Power.

3.3 IMMUNITY

3.3.1 Electrostatic Discharge

Definition:

The test assesses the ability of the EUT to operate as intended in the event of an electrostatic discharge.

We were performed the test according to LTA procedure LTA-QI-04.

Test date : 2018.06.28.

Test method : EN 61000-4-2:2009

Temperature / Humidity / Pressure : 24 $^{\circ}$ C / 49 $^{\circ}$ R.H. / 100.1 kPa Discharge Impedance : $(330\pm10\%)\Omega$ / $(150\pm10\%)$ pF

Type of Discharge (air discharge) : $\pm 2kV$, $\pm 4 kV$, $\pm 8 kV$

Type of Discharge (contact discharge) : $\pm 6 \text{ kV}$

Number of discharges at each point : 10 of each polarity

Discharge Repetition on Rate : 1 / sec

Test mode : Rec mode

Result : Complies

Measurement Data:

- Refer to the Next page

1-1. Indirect Discharge

No.	Position	Kind of Discharge	Results	Remarks
1	НСР	Contact	Complies (A)	No reaction recognized
2	VCP	Contact	Complies (A)	No reaction recognized

1-2. Direct Discharge

No.	Position	Kind of Discharge	Result	Remarks
1	Enclosure	Air	Complies (A)	No reaction recognized
2	РоЕ	Air	Complies (A)	No reaction recognized

ESD TEST POINT

3.3.2 RF Electromagnetic Field

Definition:

The test assesses the ability of the EUT to operate as intended in the presence of a radio frequency electromagnetic field disturbance.

We were performed the test according to LTA procedure LTA-QI-04.

Test date : 2018.07.03.

Test method : EN 61000-4-3:2006/A1:2008/A2:2010

Temperature / Humidity / Pressure : $24 \, ^{\circ}\text{C} \, / \, 50 \, \% \, \text{R.H.} \, / \, 100.1 \, \text{kPa}$

Frequency range : 80 MHz to 2,700 MHz

Test level : 10 V/m (measured unmodulated)

Amplitude Modulation : AM, 80 %, 1 kHz Sinusoidal

PM, 1 Hz (0.5s ON: 0.5s OFF)

Step size : 1 % of fundamental

Dwell Time : 3 s

Test mode : Rec mode

Result : Complies

Port	Side	Result	Remarks
	Front	Complies (A)	No reaction recognized
TT 1 1	Left	Complies (A)	No reaction recognized
Horizontal	Rear	Complies (A)	No reaction recognized
	Right	Complies (A)	No reaction recognized
	Front	Complies (A)	No reaction recognized
V	Left	Complies (A)	No reaction recognized
Vertical	Rear	Complies (A)	No reaction recognized
	Right	Complies (A)	No reaction recognized

3.3.3 Electrical fast transients

Definition:

The test assesses the ability of the EUT to operate as intended in the event of fast transients presence on one of the input/output ports.

We were performed the test according to LTA procedure LTA-QI-04.

Test date : 2018.06.28.

Test method : EN 61000-4-4:2012

Temperature / Humidity / Pressure : 23 $^{\circ}$ C / 50 $^{\circ}$ R.H. / 100.1 kPa

Cable length : > 3 m

Test level : 2.0 kV (AC power input port)

1.0 kV (Signal port)

Polarity : Negative/ positive

Repetition frequency : 100 kHzTest mode Result : Complies

Signal Line	Test level	Result	Remarks
PoE	± 1 kV	Complies (A)	No reaction recognized

3.3.4 Surge

Definition:

The test assesses the ability of the EUT to operate as intended in the event of surge presence on the AC main power input ports.

We were performed the test according to LTA procedure LTA-QI-04.

Test date :

Test method : EN 61000-4-5:2014 Temperature / Humidity / Pressure : - $^{\circ}$ C / - $^{\circ}$ R.H. / - kPa

Test level : ± 0.5 kV, ± 1 kV (line to line)

 \pm 0.5 kV, \pm 1 kV, \pm 2 kV (line to ground),

 \pm 0.5 kV, \pm 1 kV (signal line)

Polarity : Negative/ positive

Wave shape : 1.2/50 µs pulse

Number of surges : 5 (at each phase)

Test mode - mode

Result : Not Applicable

Phase	Line	level	Result	Remark
-	-	-	-	-

3.3.5 Conducted disturbances, induced by radio-frequency fields

Definition:

The test assesses the ability of the EUT to operate as intended in the presence of a radio frequency electromagnetic disturbance on the input/output ports.

We were performed the test according to LTA procedure LTA-QI-04.

Test date : 2018.07.02.

Test method : EN 61000-4-6:2014/AC:2015 Temperature / Humidity / Pressure : 24 °C / 50 % R.H. / 100.1 kPa

Frequency range : 0.15MHz - 100 MHz

Test level : 10 Vrms unmodulated

Amplitude Modulation : AM, 80 %, 1 kHz Sinusoidal

PM, 1 Hz (0.5s ON: 0.5s OFF)

Step size : 1 % of fundamental.

Test mode : Rec mode

Result : Complies

Port	Test level (Vrms)	Result	Remarks
PoE	10	Complies (A)	No reaction recognized

3.3.6 Mains supply voltage dips, short interruptions

Definition:

The test assesses the ability of the EUT to operate as intended in the event of voltage dips and interruptions present on the AC mains power input ports.

We were performed the test according to LTA procedure LTA-QI-04.

Test date :

Test method : EN 61000-4-11:2004/A1:2017

Temperature / Humidity / Pressure : - $^{\circ}$ C / - $^{\circ}$ R.H. / - kPa

Ut : 230 Vac
Test mode : - mode

Result : Not Applicable

Test Level %Ut	Voltage droop and interruptions %Ut	Duration of Reduction (period)	Result	Remarks
80	20	250	-	-
70	30	25	-	-
40	60	10	-	-
0	100	250	-	-

3.3.7 Mains supply voltage variations

Definition:

The test assesses the ability of the EUT to operate as intended in the event of voltage variations present on the AC mains power input ports.

We were performed the test according to LTA procedure LTA-QI-04.

Test date : -

Test method : EN 50130-4:2011/A1:2014

Temperature / Humidity / Pressure : - $^{\circ}$ C / - $^{\circ}$ R.H. / - kPa

Supply Voltage maximum : Unom + 10 % Supply Voltage minimum : Unom - 15 %

Ut : 230 Vac
Test mode : - mode

Result : Not Applicable

Measurement Data:

Unom = Nominal mains voltage. Where provision is made to adapt the equipment to suit a number of nominal supply voltages (e.g. by transformer tap changing), the above conditioning severity shall be applied for each nominal voltage, with the equipment suitably adapted. For equipment which is claimed to be suitable for a range of nominal mains voltages (e.g. 220/240 V) without adaptation, Umax = (Maximum Unom) + 10 %, and Umin = (Minimum Unom) p 15 %. In any case the range of Unom must include the European nominal mains voltage of 230 V.

2 Mains supply voltage variations

230 V, 50 Hz

Test LevelCondition		Test Level (V)	Result	Remarks
Unom	+10%	253	-	-
Unom	-15%	195.5	-	-

APPENDIX A

TEST EQUIPMENT AND ANCILLARIES USED FOR TESTS

To facilitate inclusion on each page of the test equipment used for related tests, each item of test equipment are identified by the Test Laboratory.

Conducted emissions

	Item	Model Name	Manufacturer	Serial No.	Next Cal.	Interval
\boxtimes	EMI TEST Receiver	ESR	Rohde & Schwarz	101499	2018.07.11	1 year
\boxtimes	Pulse Limiter	ESH3-Z2	Rohde & Schwarz	100710	2019.03.19	1 year
	LISN	ESH3-Z6	Rohde & Schwarz	100378	2018.09.07	1 year
	LISN	ESH3-Z6	Rohde & Schwarz	101468	2018.12.21	1 year
\boxtimes	LISN	ENV216	Rohde & Schwarz	100408	2018.09.07	1 year
\boxtimes	LISN	LT32C/10	AFJ	32031518210	2018.11.24	1 year
	TEST PROGRAM	e3_Ver: 5.5.201a	AUDIX	-	1	-
	ISN	ISN T800	TESEQ	27109	2019.01.23	1 year
	ISN	ENY81-CA6	Rohde & Schwarz	101565	2019.01.23	1 year
	CURRENT PROBE	EZ-17	Rohde & Schwarz	100508	2019.01.22	1 year

Radiated Emission - Below 1 GHz

	Item	Model Name	Manufacturer	Serial No.	Next Cal.	Interval
\boxtimes	EMI TEST Receiver	ESU	Rohde & Schwarz	100092	2018.12.21	1 year
\boxtimes	Amplifier (25 dB)	8447D	HP	2944A07684	2018.09.07	1 year
\boxtimes	TRILOG Antenna	VULB9160	SCHWARZBECK	9160-3237	2019.05.16	2 year
	TEST PROGRAM	e3_Ver: 6.2009- 10-12a	AUDIX	-	-	-

Radiated Emission - Above 1 GHz

	Item	Model Name	Manufacturer	Serial No.	Next Cal.	Interval
\boxtimes	EMI TEST Receiver	ESU	Rohde & Schwarz	100092	2018.12.21	1 year
	Amplifier (25 dB)	8449B	HP	3008A00337	2019.03.19	1 year
	HORN ANTENNA	3115	ETS	00055005	2019.05.16	2 year
	TEST PROGRAM	e3_Ver: 6.2009- 10-12a	AUDIX	-	-	-

Electrostatic Discharge

	Item	Model Name	Manufacturer	Serial No.	Next Cal.	Interval
\boxtimes	ESD Simulator	ESS-2000	NOISEKEN	ESS0625187	2019.03.20	1 year

RF Electromagnetic Field

	Item	Model Name	Manufacturer	Serial No.	Next Cal.	Interval
\boxtimes	Signal Generator	E4432B	Agilent	MY41310632	2019.05.15	1 year
\boxtimes	Power Meter	E4419B	Agilent	GB38410133	2019.05.15	1 year
\boxtimes	RF POWER AMPLIFIER	ITA0300KL-300	INFINITECH	0300KL 1507 001	-	-
\boxtimes	RF POWER AMPLIFIER	ITA2000KL-120	INFINITECH	200KL 1507 001	-	-
\boxtimes	RF POWER AMPLIFIER	ITA4500KL-70	INFINITECH	4500KL 1507 001	-	-
\boxtimes	RF POWER AMPLIFIER	ITA0750KL-300	INFINITECH	0750KL 1507 001	-	-
\boxtimes	LogPer.Antenna (80 Mbz ~ 3 Gbz)	K9128	RAPA	NONE	-	-

Electrical fast transients

	Item	Model Name	Manufacturer	Serial No.	Next Cal.	Interval
	Compact Generator	NX5	EMTEST	P1640185038	2019.03.19	1 year
\boxtimes	AC Power Source	Variac NX1-260- 16	EMTEST	P1648188071	2019.03.19	1 year
\boxtimes	Capacitive Coupling Clamp	CCI	EMTEST	P1703190739	2019.03.19	1 year

Conducted disturbances, induced by radio-frequency fields

	Item	Model Name	Manufacturer	Serial No.	Next Cal.	Interval
	Signal generator	SML03	R&S	103026/0013	2019.03.19	1 year
\boxtimes	POWER METER	NRVD	R&S	101689	2019.03.19	1 year
\boxtimes	RF Power Amplifier	FLL75A	FRANKONIA	1033	-	-
\boxtimes	EM INJECTION CLAMP	TSIC-23	F.C.C	529	2019.05.16	1 year
	CDN (M1)	TSCDN-M1-16A	F.C.C	07004	2018.09.07	1 year
	CDN (M2)	TSCDN-M2-16A	F.C.C	07008	2018.09.07	1 year
\boxtimes	CDN (M3)	TSCDN-M3-16A	F.C.C	07017	2018.09.07	1 year

APPENDIX B

PERFORMANCE CRITERIA

Performance criteria

The variety and the diversity of the apparatus within the scope of this document makes it difficult to define precise criteria for the evaluation of the immunity test results.

If as a result of the application of the tests defined in this standard, the apparatus becomes dangerous or unsafe then the apparatus shall be deemed to have failed the test.

A functional description and a definition of performance by the manufacture and noted in the test report, based on the following criteria:

Electrostatic discharge

There shall be no damage, malfunction or change of status due to the conditioning.

Flickering of an indicator during the application of discharge is permissible, providing that there is no residual change in the EUT or any change in outputs, which could be interpreted by associated equipment as a change. The EUT shall meet the acceptance criteria for the functional test (see Clause 6), after the conditioning.

Radiated electromagnetic fields

There shall be no damage, malfunction or change of status due to the conditioning.

Flickering of an indicator during the conditioning is permissible, providing that there is no residual change in the EUT or any change in outputs, which could be interpreted by associated equipment as a change, and no such flickering of indicators occurs at a field strength of 3 V/m.

For components of CCTV systems, where the status is monitored by observing the TV picture, then deterioration of the picture is allowed at 10 V/m, providing.

(a) there is no permanent damage or change to the EUT

(e.g. no corruption of memory or changes to programmable setting etc.)

(b) at 3 V/m, any deterioration of the picture is so minor that the system could still be used; and

(c) there is no observable deterioration of the picture at 1 V/m.

The EUT shall meet the acceptance criteria for the functional test(see Clause 6), after the conditioning.

Fast transient burst / slow high energy voltage surge

There shall be no damage, malfunction or change of status due to the conditioning.

Flickering of an indicator during the application of the bursts is permissible, providing that there is no residual change in the EUT or any change in outputs, which could be interpreted by associated equipment as a change. The EUT shall meet the acceptance criteria for the functional test (see Clause 6), after the conditioning.

Slow high energy voltage surge

There shall be no damage, malfunction or change of status due to the conditioning.

Flickering of an indicator during the application of the surges is permissible, providing that there is no residual change in the EUT or any change in outputs, which could be interpreted by associated equipment as a change. The EUT shall meet the acceptance criteria for the functional test (see Clause 6), after the conditioning.

Conducted RF immunity

There shall be no damage, malfunction or change of status due to the conditioning.

Flickering of an indicator during the conditioning is permissible, providing that there is no residual change in the EUT or any change in outputs, which could be interpreted by associated equipment as a change, and no such flickering of indicators occurs at $U0 = 130 \text{ dB}\mu\text{V}$.

For components of CCTV systems, where the status is monitored by observing the TV picture, then deterioration of the picture is allowed at U0 = 140 dB μ V, providing

- (a) there is no permanent damage or change to the EUT
 - (e.g. no corruption of memory or changes to programmable settings, etc.)
- (b) at $U0 = 130 \text{ dB}\mu\text{V}$, any deterioration of the picture is so minor that the system could still be used, and
- (c) there is no observable deterioration of the picture at U0 = 120 dB μN .

The EUT shall meet the acceptance criteria for the functional test(see Clause 6), after the conditioning.

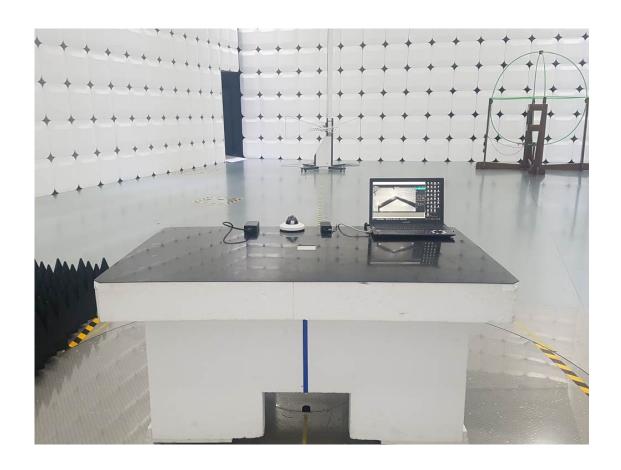
Voltage dip/interruption / Voltage variation

There shall be no damage, malfunction or change of status due to the conditioning.

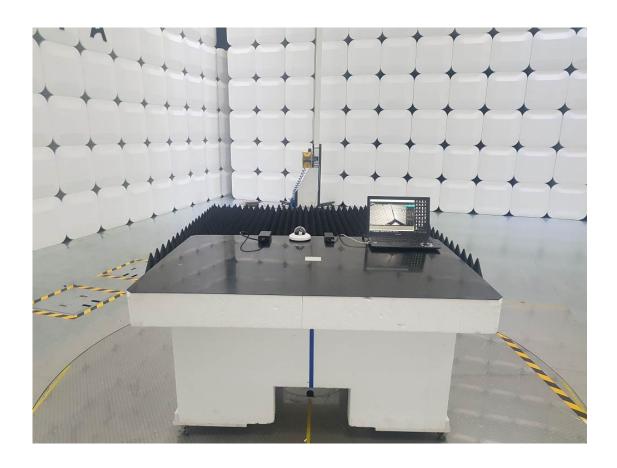
Flickering of an indicator during the conditioning is permissible, providing that there is no residual change in the EUT or any change in outputs, which could be interpreted by associated equipment as a change. The EUT shall meet the acceptance criteria for the functional test(see Clause 6), after the conditioning.

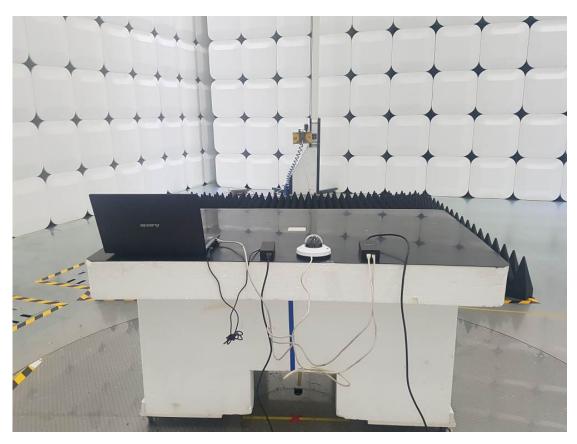
Mains supply voltage variations

There shall be no damage, malfunction or change of status due to the different supply voltage conditions. The EUT shall meet the acceptance criteria for the functional test(see Clause 6), during the conditioning.


APPENDIX C


PHOTOGRAPHS





Radiated emission (Maximum emission configuration)-Below 1 GHz



Electrostatic discharge

RF Electromagnetic Field

Electrical fast transients

Conducted Disturbances, Induced by Radio-Frequency Fields

EUT

