

243 Jubug-ri, Yangji-myeon, Cheoin-gu, Yongin-si, Gyeonggi-do 449-822, Korea Tel: +82-31-323-6008 Fax: +82-31-323-6010 <u>http://www.ltalab.com</u>

EMC TEST REPORT

Dates of Tests: November 08 – 14, 2017 Test Report S/N: LR500121711K Test Site : LTA Co., Ltd.

Model No.

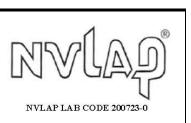
APPLICANT

Manufacturing Description Video Encoder : IDIS CO., LTD. Manufacturer : Model name **HE-1101** : Additional model name : -**Test Device Serial No.:** Identification : Directive **Electromagnetic Compatibility Directive 2014/30/EU** : **Rule Part(s)** EN 55032:2015 : EN 50130-4:2011/A1:2014 EN 61000-3-2:2014 EN 61000-3-3:2013 Data of reissue November 16, 2017 :

HE-1101

IDIS CO., LTD.

This test report is issued under the authority of:


Young Kyu Shin, Technical Manager

An

Tae Won Kim, Test Engineer

The test was supervised by:

This test result only responds to the tested sample. It is not allowed to copy this report even partly without the allowance of the test laboratory. The report must not be used by the client to claim product certification, approval, or endorsement by NVLAP, NIST, or any agency of the Federal Government.

Revision	Date of issue	Test report No.	Description
0	16.11.2017	LR500121711K	Initial

TABLE OF CONTENTS

1. General inform	nation's	4
2. Information's	about test item	5
3. Test Report		7
3.1 Summar	y of tests	7
3.2 EMISSI	ON	8
	onducted emissions	
3.2.2 Ra	diated Emission	16
3.2.3 Ha	rmonic Current (AC power input port)	24
3.2.4 Vo	Itage Variation and Flicking (AC power input port)	
3.3 IMMUN	ITY	
3.3.1 El	ectrostatic Discharge	
3.3.2 RI	F Electromagnetic Field	
3.3.3 El	ectrical fast transients	35
3.3.4 Su	rge	
3.3.5 Co	onducted disturbances, induced by radio-frequency fields	
3.3.6 M	ains supply voltage dips, short interruptions	40
3.3.7 M	ains supply voltage variations	41
APPENDIX A	TEST EQUIPMENT AND ANCILLARIES USED FOR TESTS	42
APPENDIX B	PERFORMANCE CRITERIA	46
APPENDIX C	Measurement Uncertainty	49
APPENDIX D	PHOTOGRAPHS	

1. General information's

1-1 Test Performed

Company name	:	LTA Co., Ltd.
Address	:	243, Jubug-ri, Yangji-Myeon, Yongin-Si, Kyunggi-Do, Korea. 449-822
Web site	:	http://www.ltalab.com
E-mail	:	chahn@ltalab.com
Telephone	:	+82-31-323-6008
Facsimile		+82-31-323-6010
Quality control in the test	ing	laboratory is implemented as per ISO/IEC 17025 which is the "General

requirements for the competents of calibration and testing laboratory".

1-2 Accredited agencies

LTA Co., Ltd. is approved to perform EMC testing by the following agencies:

Agency	Country	Accreditation No.	Validity	Reference	
NVLAP	U.S.A	200723-0	Updating	ECT accredited Lab.	
RRA	KOREA	KR0049	-	EMC accredited Lab.	
FCC	U.S.A	649054	2019-04-13	FCC CAB	
	JAPAN	C-4948,	2020-09-10		
VCCI		T-2416,	2020-09-10	VCCI as a interation	
VCCI		R-4483(10 m),	2020-10-15	VCCI registration	
		G-847	2018-12-13		
IC	CANADA	5799A-1	2019-11-07	IC filing	
KOLAS	KOREA	NO.551	2021-08-20	KOLAS accredited Lab.	

2. Information's about test item

2-1 Client/ Manufacturer

	-	
Company name	:	IDIS CO., LTD.
Address	:	8-10, TECHNO 3-RO, YUSEONG-GU, DAEJEON, KOREA
Telephone / Facsimile	:	+82-31-723-5205 / +82-31-723-5108
<u>Factory</u>		
Company name		IDIS CO., LTD.
Address		8-10, TECHNO 3-RO, YUSEONG-GU, DAEJEON, KOREA
2-2 Equipment Under Te	est (EU	<u>JT)</u>
Class	:	А
Category	:	Video Encoder
Model name	:	HE-1101
Additional Model Name	:	-
Serial number	:	Identification
Date of receipt	:	October 24, 2017
EUT condition	:	Pre-production, not damaged
Interface ports		DC IN, HDMI IN, HDMI OUT, D-Sub IN, D-Sub OUT, Audio IN, Audio OUT,
	:	LAN, USB-B
Power rating	:	DC 12 V (Used for Adapter)
Modulator	:	-
Crystal/Oscillator(s)	:	-
Firmware version	:	XXXX
2-3 Modification		
-NONE		
2-4 Model Specification		
-NONE		
2-5 Test conditions		
Temp. / Humid. / Pressure	:	+(18 - 23) °C / (34 - 47) %RH / (99.9) kPa
Tested Model	:	HE-1101
Test mode	:	1 kHz + Operating mode (Adapter, PoE)
Power supply	:	AC 230 V / 50 Hz

Equipment	Model No.	Serial No.	Manufacturer
Adapter	JP6004AS	SB1604000099	SEUNG BO ELECOM
NVR	N/A	N/A	N/A
Monitor #1	P2416D	N/A	DELL
Moniotr #2	U2412M	N/A	DELL
Mobile Phone	IM-A770K	N/A	SKY
Earphone	N/A	N/A	SAMSUNG

2-6 Ancillary Equipment / 1 kHz + Operating mode (Adapter)

2-6 Ancillary Equipment / 1 kHz + Operating mode (PoE)

Equipment	Model No.	Serial No.	Manufacturer
PoE Adapter	PSE305	N/A	Gigabit
NVR	N/A	N/A	N/A
Monitor #1	P2416D	N/A	DELL
Moniotr #2	U2412M	N/A	DELL
Mobile Phone	IM-A770K	N/A	SKY
Earphone	N/A	N/A	SAMSUNG

3. Test Report

3.1 Summary of tests

Parameter	Applied Standard	Status				
I. Emission						
Radiated Emission	EN 55032:2015	С				
Conducted Emission	EN 55032:2015	С				
Harmonic Current Emission	EN 61000-3-2:2014	С				
Voltage Fluctuations and Flicker	EN 61000-3-3:2013	С				
II. Immunity						
Electrostatic Discharge	EN 61000-4-2:2009	С				
RF Electromagnetic field	EN 61000-4-3:2006/A2:2010	С				
Fast Transients Common mode	EN 61000-4-4:2012	С				
Surges, line to line and line to ground	EN 61000-4-5:2014	С				
RF common mode	EN 61000-4-6:2014	С				
Voltage dips and Interruptions	EN 61000-4-11:2004	С				
Main supply voltage variations	EN 50130-4:2011	С				

<u>Note 1</u>: C=Complies NC=Not Complies NT=Not Tested NA=Not Applicable

<u>*Note 2*</u>: The device is operated by DC Power.

Note 3: The data in this test report are traceable to the national or international standards.

3.2 EMISSION 3.2.1 Conducted emissions

Definition:

The test assesses the ability of the EUT to limit its internal noise from being present on the AC mains Power In/Output ports.

We were performed the test according to LTA procedure LTA-QI-04.

Measurement Frequency range	:	150 kHz - 30MHz
Test method	:	EN 55032:2015
Measurement RBW	:	9 kHz
Test mode	:	1 kHz + Operating mode (Adapter, PoE)
Result	:	Complies

Measurement Data:

- Refer to the Next page (Maximum emission configuration)

A sample calculation:

COR. F (correction factor)= LISN Insertion loss + Cable loss

Emission Level= meter reading + COR.F

Limits for conducted disturbance at the mains ports of class A ITE

Frequency Range	Quasi-peak	Average
(0.15 – 0.5) MHz	79 dBuV	66 dBuV
(0.5 – 30) MHz	73 dBuV	60 dBuV

Note: The limits will decrease with the frequency logarithmically within 0.15MHz to 0.5MHz

Limits for conducted disturbance at the mains ports of class B ITE

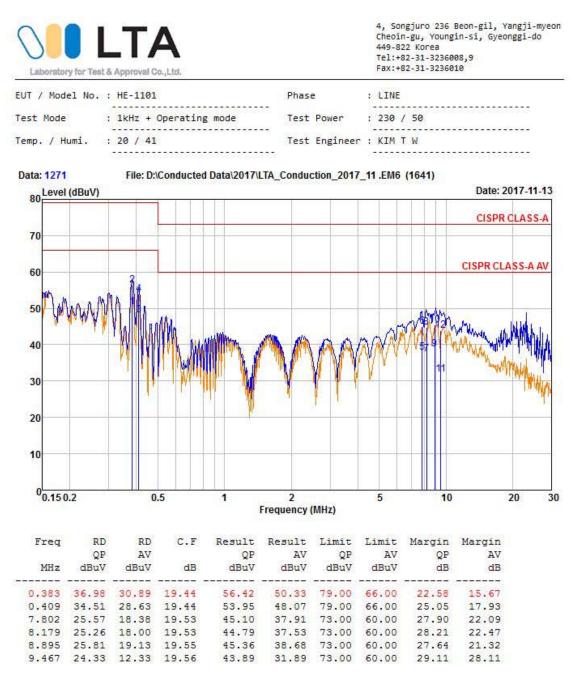
Frequency Range	Quasi-peak	Average			
(0.15 – 0.5) MHz	(66 – 56) dBuV	(56 - 46) dBuV			
(0.5 – 5) MHz	56 dBuV	46 dBuV			
(5 – 30) MHz 60 dBuV 50 dBuV					
Note: The limits will decrease with the frequency logarithmically within 0.15 MHz to 0.5 MHz					

Limits of conducted common mode (asymmetric mode) disturbance at telecommunication ports in the frequency range 0.15 MHz to 30 MHz for class A equipment

Engineman Domoo	Voltage limits		Current limits	
Frequency Range	Quasi-peak	Average	Quasi-peak	Average
(0.15 – 0.5) MHz	(97 – 87) dBuV	(84 – 74) dBuV	(53 - 43) dBuV	(40 – 30) dBuV
(0.5 – 30) MHz	87 dBuV	74 dBuV	43 dBuV	30 dBuV

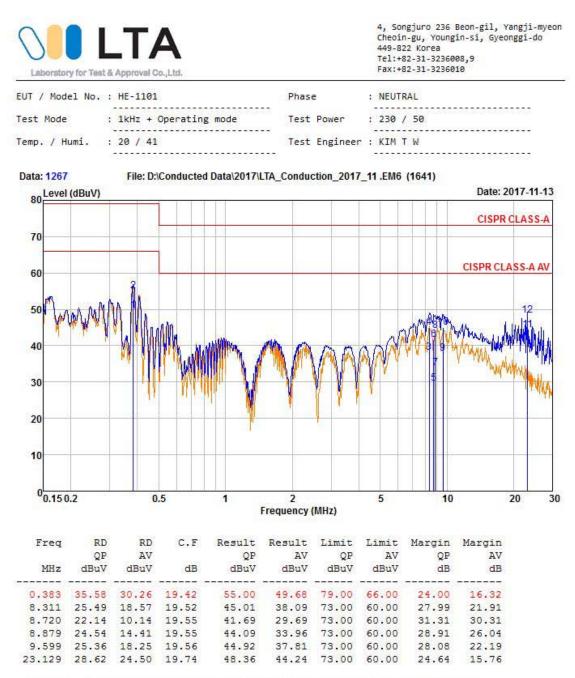
Note 1: The limits decrease linearly with the logarithm of the frequency in the range 0.15 MHz to 0.5 MHz.

Note 2: The current and voltage disturbance limits are derived for use with an impedance stabilization network (ISN) which presents a common mode (asymmetric mode) impedance of 150 Ω to the telecommunication port under test (conversion factor is 20 log₁₀ 150/I= 44 dB)

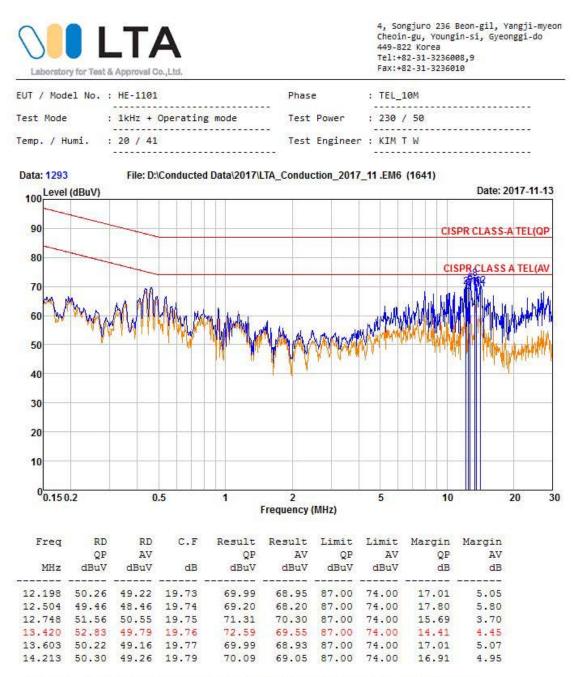

Limits of conducted common mode (asymmetric mode) disturbance at telecommunication ports in the frequency range 0.15 MHz to 30 MHz for class B equipment

Erectioner Donce	Voltage	e limits	Current limits		
Frequency Range	Quasi-peak	Average	Quasi-peak	Average	
(0.15 – 0.5) MHz	(84 – 74) dBuV	(74 – 64) dBuV	(40 - 30) dBuV	(30 – 20) dBuV	
(0.5 – 30) MHz	74 dBuV	64 dBuV	30 dBuV	20 dBuV	

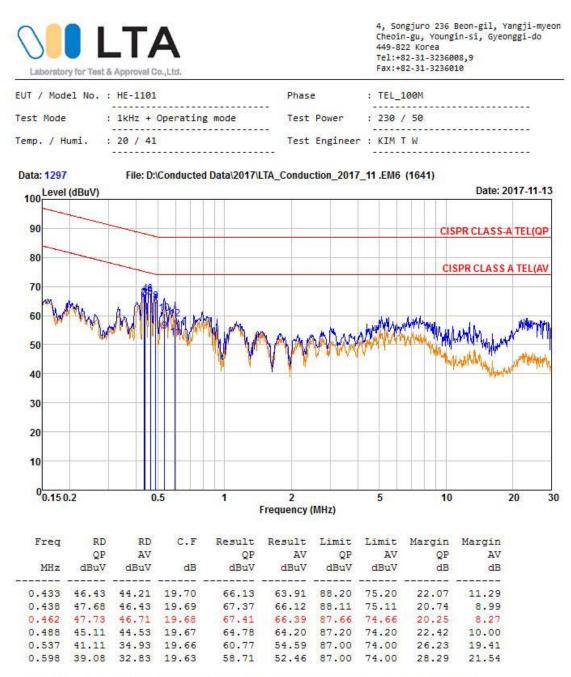
Note 1: The limits decrease linearly with the logarithm of the frequency in the range 0.15 MHz to 0.5 MHz.


Note 2: The current and voltage disturbance limits are derived for use with an impedance stabilization network (ISN) which presents a common mode (asymmetric mode) impedance of 150Ω to the telecommunication port under test (conversion factor is $20 \log_{10} 150/I= 44 dB$)

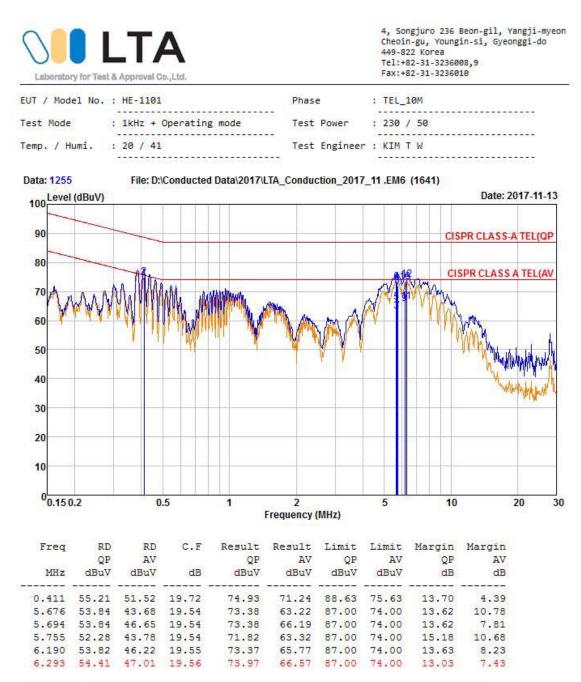
Conducted emissions / LINE _ 1 kHz + Operating mode (Adapter)


Remarks: C.F (Correction Factor) = Insertion loss + Cable loss + Pulse Limiter

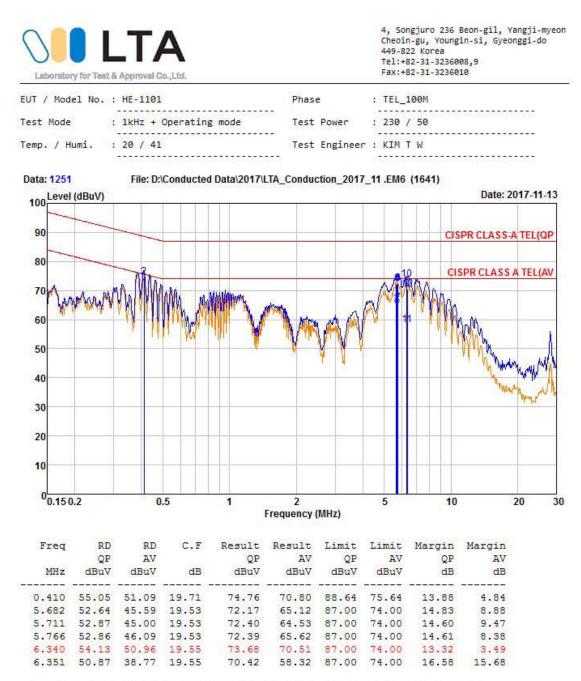
Conducted emissions / NEUTRAL _ 1 kHz + Operating mode (Adapter)


Remarks: C.F (Correction Factor) = Insertion loss + Cable loss + Pulse Limiter

Conducted emissions / TEL_10 M _ 1 kHz + Operating mode (Adapter)


Remarks: C.F (Correction Factor) = Insertion loss + Cable loss + Pulse Limiter

Conducted emissions / TEL_100 M _ 1 kHz + Operating mode (Adapter)


Remarks: C.F (Correction Factor) = Insertion loss + Cable loss + Pulse Limiter

Conducted emissions / TEL_10 M _ 1 kHz + Operating mode (PoE)

Remarks: C.F (Correction Factor) = Insertion loss + Cable loss + Pulse Limiter

Conducted emissions / TEL_100 M _ 1 kHz + Operating mode (PoE)

Remarks: C.F (Correction Factor) = Insertion loss + Cable loss + Pulse Limiter

3.2.2 Radiated Emission

Definition:

The test assesses the ability of ancillary equipment to limit their internal noise from being radiated from the enclosure. We were performed the test according to LTA procedure LTA-QI-04.

Test method	:	EN 55032:2015
Measuring Distance	:	10m
Measurement Frequency range	:	$30 \text{ MHz} - 6\ 000 \text{ MHz}$
Measurement RBW	:	120 kHz
Test mode	:	1 kHz + Operating mode (Adapter, PoE)
Result	:	Complies

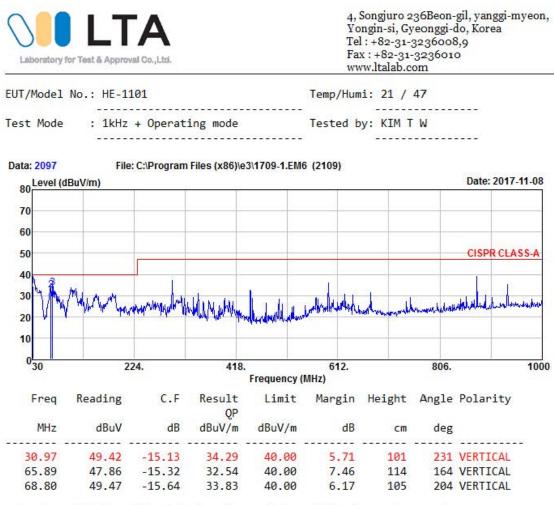
Measurement Data:

- Refer to the Next page (Maximum emission configuration)

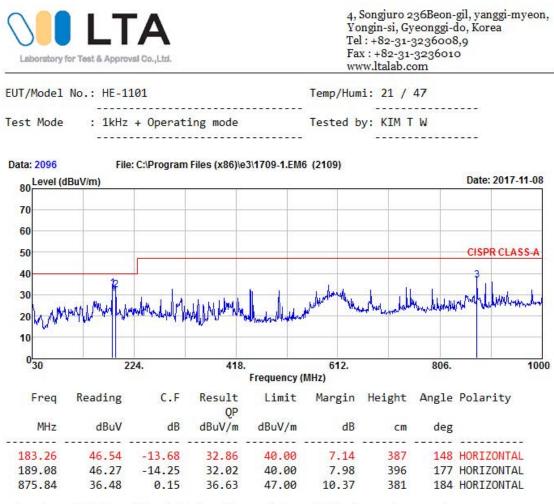
A sample calculation:

COR. F (correction factor)= Antenna factor + Cable loss- Amp.gain- Distance correction Emission Level= meter reading + COR.F Limit of 10 m for below 1 GHz

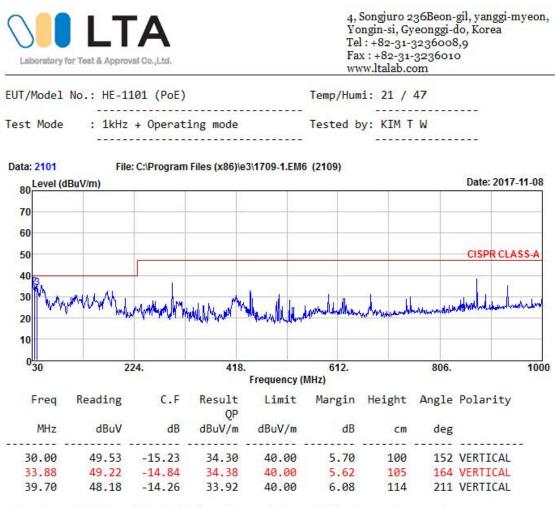
CLASS A

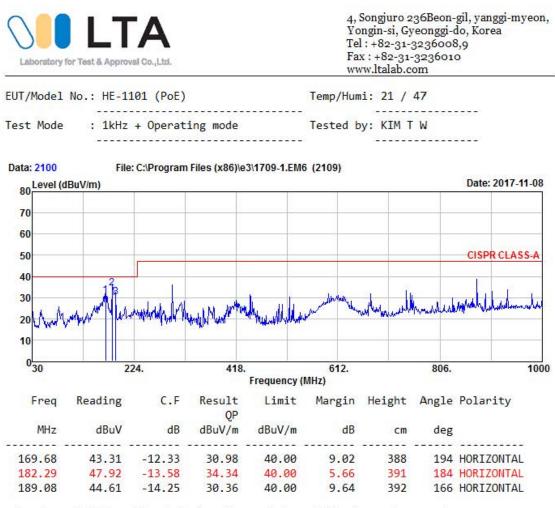

Frequency Range	Quasi-peak
(30 – 230) MHz	40 dBuV/m
(230 – 1 000) MHz	47 dBuV/m
CLASS B	
Frequency Range	Quasi-peak
(30 – 230) MHz	30 dBuV/m
(230 – 1 000) MHz	37 dBuV/m

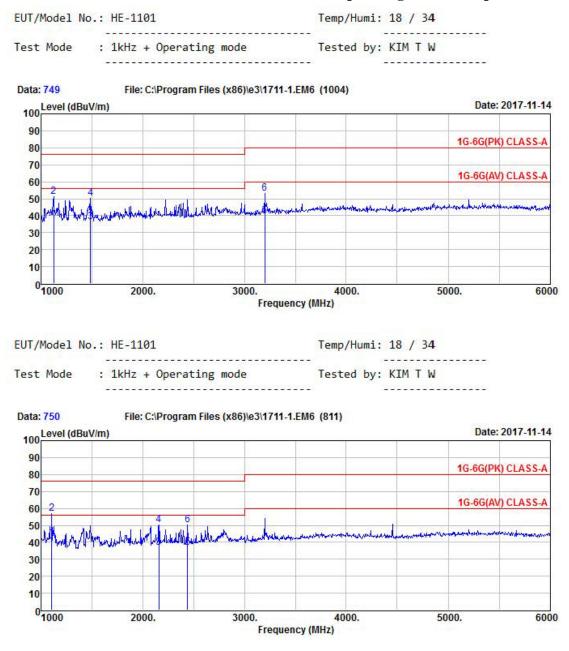
Limit of 3m for above 1 GHz


CLASS A

En anna Dan an	Average Limit @ 3m	Peak limit @ 3m		
Frequency Range	(dBµV/m)	$(dB\mu V/m)$		
(1 000 – 3 000) MHz	56	76		
(3 000 – 6 000) MHz	60	80		
NOTE:	The lower limit applies a	t the transition frequency.		
CLASS B				
Erecuency Dones	Average Limit @ 3m	Peak limit @ 3m		
Frequency Range	(dBµV/m)	(dBµV/m)		
(1 000 – 3 000) MHz	50	70		
(3 000 – 6 000) MHz	54	74		
NOTE:	The lower limit applies at the transition frequency.			

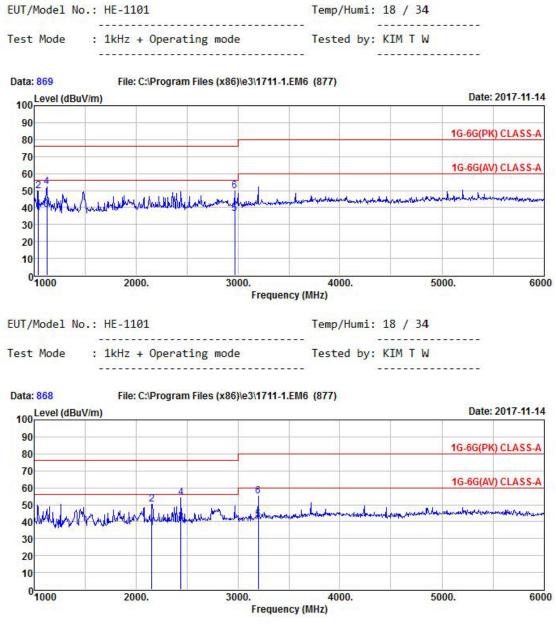

Radiated Emission (Below 1 GHz) / V _ 1 kHz + Operating mode (Adapter)


Radiated Emission (Below 1 GHz) / H _ 1 kHz + Operating mode (Adapter)



Radiated Emission (Below 1 GHz) / V _ 1 kHz + Operating mode (PoE)

Radiated Emission (Below 1 GHz) / H _ 1 kHz + Operating mode (PoE)



Radiated Emission (Above 1 GHz) / 1 kHz + Operating mode (Adapter)

Distance:4.5 m

Ver Data: 749 Hor Data: 750

Freq.(MHz)	Reading(PK)	Reading(AV)	C.F	Result(PK)	Result(AV)	Limit(PK)	Limit(AV)	Margin(PK)	Margin(AV)	Height	Angle	Polarity
MHz	dBu∀	dBu∀	dB	dBu∀/m	dBuV/m	dBuV/m	dBuV/m	dB	dB	cm	deg	Hor/Ver
1105.0	67.0	52.5	-6.49	60.49	45.96	76.0	56.0	15.51	10.04	100	198	Н
2160.0	53.4	40.0	0.2	53.62	40.15	76.0	56.0	22.38	15.85	100	201	Н
2440.0	52.5	38.8	1.44	53.92	40.20	76.0	56.0	22.08	15.80	100	184	Н
1125.0	61.0	47.7	-6.25	54.75	41.42	76.0	56.0	21.25	14.58	100	172	V
1485.0	58.2	44.8	-4.72	53.52	40.05	76.0	56.0	22.48	15.95	100	166	V
3200.0	50.6	37.3	6	56.61	43.33	80.0	60.0	23.39	16.67	100	194	V

Radiated Emission (Above 1 GHz) / 1 kHz + Operating mode (PoE)

Distance:4.5 m

Ver Data: 869 Hor Data: 868

Freq.(MHz)	Reading(PK)	Reading(AV)	C.F	Result(PK)	Result(AV)	Limit(PK)	Limit(AV)	Margin(PK)	Margin(AV)	Height	Angle	Polarity
MHz	dBu∀	dBu∨	dB	dBuV/m	dBuV/m	dBu∀/m	dBu∀/m	dB	dB	cm	deg	Hor/Ver
2155.0	53.7	39.7	0.21	53,86	39.87	76.0	56.0	22.14	16.13	100	157	Н
2440.0	56.2	42.0	1.44	57.65	43.47	76.0	56.0	18.35	12.53	100	182	Н
3200.0	52.8	38.7	6	58.77	44.66	80.0	60.0	21.23	15.34	100	173	Н
1040.0	60.3	47.1	-6,96	53, 34	40.13	76.0	56.0	22.66	15.87	100	194	V
1125.0	61.7	48.6	-6.25	55.49	42.39	76.0	56.0	20.51	13.61	100	172	V
2970.0	49.2	35.7	4.08	53.24	39, 73	76.0	56.0	22.76	16.27	100	176	V

3.2.3 Harmonic Current (AC power input port)

Definition:

This part deals with the Limitation of harmonic currents injected into the public supply system. We were performed the test according to LTA procedure LTA-QI-04.

Test method	:	EN 61000-3-2:2014
Test mode	:	1 kHz + Operating mode (Adapter)
Rated power	:	6.709 W
Result	:	Complies

Measurement Data:

- Uncertainty(HAR) = +/- 2.24 % (with a 95 % confidence level, k=2)

"It has been demonstrated that the HAR generator meets the specified requirements in the standard with at least 95 % confidence."

Harmonic Current (AC power input port) / 1 kHz + Operating mode (Adapter)

14th November 2017 - 09:58	8:36 Page 1/3	IECSoft v2_5
\sim	BSEN61000-3-2:20	14
N4L	Fluctuating Harmo	nics 👬 👬
	Instrument Details	
Instrument Model	PPA	.5511
Serial Number	162-	04957
Firmware Version	2."	168
N4L Calibration Date	18th Septe	ember 2017
Instrument Version	Star	ndard
	Test Settings	
Class		ss A
Mode		sured
	Equipment Under Test	
Brand		O., LTD.
Model		1101
Serial	N	I/A
Impedance Network ID		I/A
	Test Conditions	
	User Entered	Measured
Rated Voltage	230	230.674V
Rated Current	N/A	78.049mA
Rated Frequency	50	50.000Hz
Rated Power	N/A	6.709W
	Additional Test Informatio	
Measured Power Factor		373
Max Current THD		.53%
Max THC		67mA
Max Power		54W
Max F.Current		64mA
Average F.Current		80mA
Minimum Current		00A
Test Duration		inutes
	Additional Test Details	
Operator		TW
Lab Name		TA
Location	N	I/A
Notes		
Signature		
Results	Test - N/A. Rate	ed Power < 75W

With the exception of lighting equipment section 7 of the BSEN61000-3-2:2014 standard declares that no Harmonic current limits are specified for equipment with a rated power of

		BSEN610			ating Har	monics		
				ument De				
Instrument	Model				PPA5511	l,		
Instrument	Serial				162-0495	7		
Instrument	Firmware				2.168			
			Equipn	nent Unde	er Test			
Brand					DIS CO., L			
Model					HE-1101			
Serial					N/A			
			Extra T	est Inforn	nation			
		Average		Peak			Limit	
THC		71.09		[72.267mA			N/A
POHC		19.87	7mA		20.665mA			.375mA
Voltage Cre	st Factor	1.40			1.40626		1.40) to 1.42
Current Cre	st Factor	10.3	231		13.685			N/A
			Harmo	nics Resu	ts 1/1			
Harmonic S					Avg %ofL			Peak %of
	I/A		0.04278	N/A	N/A	0.04366	N/A	N/A
	J/A		0.00513		N/A	0.00575	N/A	N/A
	I/A		0.02758	N/A	N/A	0.02823	N/A	N/A
	I/A		0.00503		N/A	0.0056	N/A	N/A
	I/A		0.02673		N/A	0.02764	N/A	N/A
	J/A		0.00496		N/A	*	N/A	N/A
	J/A		0.02545		N/A	0.02634		N/A
	I/A		0.00495		N/A		N/A	N/A
	I/A		0.02373		N/A	0.02459		N/A
	J/A		0.00494		N/A	0.00546		N/A
11 N	J/A		0.02163	N/A	N/A	0.0225	N/A	N/A
	I/A		0.0049	N/A	N/A	0.00541	N/A	N/A
	I/A		0.01941	N/A	N/A	0.02029	N/A	N/A
	I/A		0.00483	N/A	N/A		N/A	N/A
	I/A		0.01706		N/A	0.01787	N/A	N/A
	I/A		0.00483	N/A	N/A	0.00535	N/A	N/A
	I/A		0.01463	N/A	N/A	0.0156	N/A	N/A
	I/A		0.00479	N/A	N/A	0.00528	N/A	N/A
	I/A		0.01229	N/A	N/A	0.013	N/A	N/A
	I/A		0.00477	N/A	N/A		N/A	N/A
	I/A		0.01013	N/A	N/A	0.01101	N/A	N/A
	I/A		0.00474	N/A	N/A	0.00541	N/A	N/A
	I/A		0.00815	N/A	N/A	0.00898	N/A	N/A
	I/A		0.00478	N/A	N/A	0.00528	N/A	N/A
25 N	I/A		0.0066	N/A	N/A	0.00727	N/A	N/A
	I/A		0.00478	N/A	N/A	0.00521	N/A	N/A
	I/A		0.00549	N/A	N/A	0.00611	N/A	N/A
	I/A		0.00479	N/A	N/A		N/A	N/A
	I/A		0.00493		N/A	0.00578		N/A
	I/A		0.00478	N/A	N/A	*	N/A	N/A
	I/A		0.0048	N/A	N/A		N/A	N/A
	I/A		0.0048	N/A	N/A		N/A	N/A
	J/A			N/A	N/A		N/A	N/A
	I/A		0.00476		N/A		N/A	N/A
	I/A		0.00511	N/A	N/A	0.00561	N/A	N/A
	I/A		0.00479	N/A	N/A	0.00532	N/A	N/A
	J/A		0.0052	N/A	N/A	0.00572	N/A	N/A
	J/A		0.00477	N/A	N/A	0.00524	N/A	N/A
39 N	J/A		0.00525	N/A	N/A	0.00597	N/A	N/A
	I/A			N/A	N/A		N/A	N/A

	ember 2017 - 09:58:36	ý .	rmonice	IECSoft v2_
	BSEN6	1000-3-2:2014 Fluctuating Ha Instrument Details	annomes	
Instrume	nt Model	PPA5	511	
Instrume		162-0-		
	nt Firmware	2.16		
instrume		Equipment Under Test		
Brand		IDIS CO	LTD	
Model		HE-1		
Serial		N/		
Jenai		Source Results 1/1		
Harmoni	c Status	Peak (V)	Average (V)	Limit (V)
1	PASS	230.65	230.64	No Limit
2	PASS	0.1312	0.12111	0.46135
2	PASS	0.07261	0.06541	2.0761
1	PASS	0.02871	0.02416	0.46135
4 C	PASS	0.03126	0.02416	0.9227
6	PASS	0.03126	0.0242	0.46135
6	PASS	0.02813	0.02317	0.69203
/	PASS	0.02891	0.02226	0.46135
8	PASS	0.02751	0.02226	0.46135
9	PASS		0.02306	0.46135
10	PASS	0.02656	0.02224	0.23068
11		0.02793		
12	PASS		0.02299	0.23068
13	PASS	0.02847	0.02335	0.23068
14	PASS	0.02597	0.02218	0.23068
15	PASS	0.0317	0.02563	0.23068
16	PASS	0.02719	0.02219	0.23068
17	PASS	0.02742	0.02227	0.23068
18	PASS	0.0296	0.02272	0.23068
19	PASS	0.02738	0.02334	0.23068
20	PASS	0.02766	0.02238	0.23068
21	PASS	0.02743	0.02196	0.23068
22	PASS	0.02746	0.02191	0.23068
23	PASS	0.03026	0.02453	0.23068
24	PASS	0.02718	0.02271	0.23068
25	PASS	0.02674	0.02253	0.23068
26	PASS	0.02891	0.02312	0.23068
27	PASS	0.02836	0.02319	0.23068
28	PASS	0.02624	0.02176	0.23068
29	PASS	0.02674	0.02197	0.23068
30	PASS	0.02687	0.02246	0.23068
31	PASS	0.02869	0.02304	0.23068
32	PASS	0.02815	0.02237	0.23068
33	PASS	0.02851	0.02249	0.23068
34	PASS	0.02773	0.02234	0.23068
35	PASS	0.02893	0.02218	0.23068
36	PASS	0.02759	0.02255	0.23068
37	PASS	0.02864	0.0233	0.23068
38	PASS	0.02978	0.02277	0.23068
39	PASS	0.02958	0.02266	0.23068
40	PASS	0.02695	0.02251	0.23068

3.2.4 Voltage Variation and Flicking (AC power input port)

Definition:

This section is concerned with the limitation of voltage fluctuations and flicker impressed on the public low-voltage system.

We were performed the test according to LTA procedure LTA-QI-04.

Test method	:	EN 61000-3-3:2013
Test mode	:	1 kHz + Operating mode (Adapter)
Result	:	Complies

Measurement Data:

- Uncertainty(FLK) = +/- 9.94 % (with a 95 % confidence level, k=2)

"It has been demonstrated that the FLK generator meets the specified requirements in the standard with at least 95 % confidence."

Voltage Variation and Flicking (AC power input port)

14th November 2017 - 10:09:0)1 Page 1/2	IECSoft v2_5
	61000-3-3:2013 Ed Flickermeter	
	Instrument Details	
Instrument Model	PPA5	511
Serial Number	162-04	
Firmware Version	2.16	58
N4L Calibration Date	18th Septer	nber 2017
Instrument Version	Stand	
	Test Settings	
Class	Volta	age
Mode	Normal	
Minimum Current	10/	
PST	10.00 m	inutes
PLT	1 PS	STs
	Equipment Under Test	
Brand	IDIS CO	., LTD.
Model	HE-1	101
Serial	N//	Ą
Impedance Network ID	N//	A
	Test Conditions	
	User Entered	Measured
Rated Voltage	230	231.149V
Rated Current	N/A	N/A
Rated Frequency	50	50.000Hz
Rated Power	N/A	N/A
D max	0.0595% (Li	mit: 4.0%)
T max	0.0000 s (Li	
DC max	0.0018% (Li	mit: 3.3%)
	Additional Test Details	
Operator	KIM 1	
Lab Name	LT/	
Location	N//	Α
Notes		
Signature		
Results	Phase1	: PASS

14th Nove	mber 2017 - 10:09:01	Ph:1 Page 2/2					IECSo	oft v2_5a	
	IEC61000-3-3:2013 Ed.3.0 Flickermeter								
		Inst	rument De	tails					
Instrument	t Model			PPA55	11				
Instrument	t Serial			162-049	957				
Instrument	t Firmware	2.168							
		Equip	ment Unde	er Test					
Brand				IDIS CO., LTD.					
Model				HE-1101					
Serial			N/A						
	Flicker Test Results								
PST no. S	Status	DC (%)	Dmax (%)	Tmax (s)	PST	PST Lim	PLT	PLT Lim	
1 P	hase1: PASS	0.002	0.05954	0	0.082	1.00	N/A	N/A	

3.3 IMMUNITY

3.3.1 Electrostatic Discharge

Definition:

The test assesses the ability of the EUT to operate as intended in the event of an electrostatic discharge. We were performed the test according to LTA procedure LTA-QI-04.

Test method	:	EN 61000-4-2 :2009
Temperature / Humidity / Pressure	:	22 °C / 41 %RH / 99.9 kPa
Discharge Impedance	:	$(330{\pm}10\%)\Omega/(150{\pm}10\%)~pF$
Type of Discharge (air discharge)	:	± 2 kV, ± 4 kV, ± 8 kV
Type of Discharge (contact discharge)	:	$\pm 6 \text{ kV}$
Number of discharges at each point	:	10 of each polarity
Discharge Repetition on Rate	:	1 / sec
Test mode	:	1 kHz + Operating mode (Adapter, PoE)
Result	:	Complies

Measurement Data:

- Uncertainty(ESD) = +/-5 % (with a 95 % confidence level, k=2)

"It has been demonstrated that the ESD generator meets the specified requirements in the standard with at least 95 % confidence."

Criteria for compliance:

- There shall be no damage, malfunction or change of status due to the conditioning. Flickering of an indicator during the application of the discharges is permissible, providing that there is no residual change in the EUT or any change in outputs, which could be interpreted by associated equipment as a change.

1-2. Indirect Discharge

No.	Position	Kind of Discharge	Results	Remarks
1	НСР	Contact	Complies	EUT Screen disconnected during the test. After the test, EUT was operated normally.
2	VCP	Contact	Complies	EUT Screen disconnected during the test. After the test, EUT was operated normally.

1-2. Direct Discharge

No.	Position	Kind of Discharge	Result	Remarks
1	Enclosure #1	Contact	Complias	EUT Screen disconnected during the test.
I	Enclosure #1	Contact	Complies	After the test, EUT was operated normally.
2	Enclosure #2	Air	Complies	No reaction recognized
З	DC IN	Air	Complies	EUT Screen disconnected during the test.
0	DCIN	All	Complies	After the test, EUT was operated normally.
4	LAN	Contact	Complies	EUT Screen disconnected during the test.
4	LAN	Contact	Complies	After the test, EUT was operated normally.
5	USB-B	Contact	Complies	EUT Screen disconnected during the test.
5	5 030-0	Contact	Complies	After the test, EUT was operated normally.
6	Audio IN	Air	Complies	EUT Screen disconnected during the test.
0			Complies	After the test, EUT was operated normally.
7	Audio OUT	Air	Complies	EUT Screen disconnected during the test.
	Addio Oon		Complies	After the test, EUT was operated normally.
8	HDMI IN	Contact	Complies	EUT Screen disconnected during the test.
		Contact	Complies	After the test, EUT was operated normally.
9	HDMI OUT	Contact	Complies	EUT Screen disconnected during the test.
5		Contact	Complies	After the test, EUT was operated normally.
10	D-Sub IN	Contact	Complies	EUT Screen disconnected during the test.
		Contact	compiles	After the test, EUT was operated normally.
11	D-Sub OUT	Contact	Complies	EUT Screen disconnected during the test.
		Contact	compiles	After the test, EUT was operated normally.

3.3.2 RF Electromagnetic Field

Definition:

The test assesses the ability of the EUT to operate as intended in the presence of a radio frequency electromagnetic field disturbance.

We were performed the test according to LTA procedure LTA-QI-04.

Test method	:	EN 61000-4-3:2006/A2:2010
Frequency range	:	80 MHz to 2 700 MHz
Test level	:	10 V/m (measured unmodulated)
Amplitude Modulation	:	AM, 80 %, 1 ^{kHz} Sinusoidal
		PM, 1 Hz (0.5s ON : 0.5s OFF)
Step size	:	1 % of fundamental
Dwell Time	:	3 s
Test mode	:	1 kHz + Operating mode (Adapter, PoE)
Result	:	Complies

Measurement Data:

- Uncertainty = $\pm - 1.6$ dB (with a 95 % confidence level, k=2.28)

"It has been demonstrated that the RS generator meets the specified requirements in the standard with at least 95 % confidence."

MODE : 1 kHz + Operating r	mode (Adapter)
----------------------------	----------------

Port	Test level		sult	Remark	
Fort	(V/m)	Horizontal Vertical		Kelliaik	
Enclosure	10	Complies	Complies	No reaction recognized	

MODE : 1 kHz + Operating mode (PoE)

Dort	Test level	Res	sult	Remark	
Port	(V/m)	Horizontal Vertical		Kemark	
Enclosure	10	Complies	Complies	No reaction recognized	

Criteria for compliance:

- There shall be no damage, malfunction or change of status due to the conditioning. Flickering of an indicator during the conditioning is permissible, providing that there is no residual change in the EUT or any change in outputs, which could be interpreted by associated equipment as a change, and no such flickering of indicatiors occurs at a field strength of 3 V/m.

- For components of CCTV systems, where the status is monitored by observing the TV picture, then deterioration of the picture is allowed at 10 V/m.

a) There is no permanent damage or change to the EUT.

- b) At 3 V/m, any deterioration of the picture is so minor that the system could still be used.
- c) There is no observable deterioration of the picture at 1 V/m

3.3.3 Electrical fast transients

Definition:

The test assesses the ability of the EUT to operate as intended in the event of fast transients presence on one of the input/output ports.

We were performed the test according to LTA procedure LTA-QI-04.

Test method	:	EN 61000-4-4:2012
Cable length	:	> 3 m
Test level	:	2.0 kV (AC power input port) 1.0 kV (Signal port)
Polarity	:	Negative/ positive
Repetition frequency	:	100 kHz
Test mode		1 kHz + Operating mode (Adapter, PoE)
Result	:	Complies

Measurement Data:

- Uncertainty = +/- 10 % (with a 95 % confidence level, k=2)

"It has been demonstrated that the EFT/Burst generator meets the specified requirements in the standard with at least 95 % confidence."

Criteria for compliance:

- There shall be no damage, malfunction or change of status due to the conditioning. Flickering of an indicator during the application of the discharges is permissible, providing that there is no residual change in the EUT or any change in outputs, which could be interpreted by associated equipment as a change.

Test level	Result	Remarks	
+ 2 kV	Complies	No reaction recognized	
- 2 kV Complies		No reaction recognized	
Test level	Result	Remarks	
+ 1 kV	Complies	No reaction recognized	
- 1 kV	Complies	No reaction recognized	
	+ 2 kV - 2 kV Test level + 1 kV	+ 2 kV Complies - 2 kV Complies Test level Result + 1 kV Complies	

MODE : 1 kHz + Operating mode (Adapter)

MODE : 1 kHz + Operating mode (PoE)

Signal Line	Test level	Result	Remarks
POE	+ 1 kV	Complies	No reaction recognized
FUE	- 1 kV	Complies	No reaction recognized

3.3.4 Surge

Definition:

The test assesses the ability of the EUT to operate as intended in the event of surge presence on the AC main power input ports.

We were performed the test according to LTA procedure LTA-QI-04.

Test method	:	EN 61000-4-5:2014
Test level	:	$\pm \ 0.5 \ kV, \pm 1 \ kV$ (line to line)
		\pm 0.5 kV, \pm 1 kV, \pm 2 kV (line to ground),
		± 0.5 kV, ± 1 kV (signal line)
Polarity	:	Negative/ positive
Wave shape	:	1.2/ 50 μs pulse
Number of surges	:	5 (at each phase)
Test mode		1 kHz + Operating mode (Adapter, PoE)
Result	:	Complies

Measurement Data:

- Uncertainty = ± 10 % (with a 95 % confidence level, k=2)

"It has been demonstrated that the Surge generator meets the specified requirements in the standard with at least 95 % confidence."

Criteria for compliance:

- There shall be no damage, malfunction or change of status due to the conditioning. Flickering of an indicator during the application of the discharges is permissible, providing that there is no residual change in the EUT or any change in outputs, which could be interpreted by associated equipment as a change.

Phase	Line	level	Result	Phase	Line	level	Result	
		+1 kV	Complies			+1 kV	Complies	
	Line(L) to line(N)	-1 kV	Complies		Line(L) to line(N)	-1 kV	V Complies V Complies V Complies	
0°	Ling(L) to ground(BE)	-	-	90°		Ling(L) to ground(DE)	-	Complies Complies - - Complies Complies - -
0	Line(L) to ground(PE)	-	-	90	Line(L) to ground(PE)	-	KV Complies KV Complies - - - - - - KV Complies KV Complies KV Complies - - - - - - - - - - - - - - - - - - - - - - - -	
	Line(N) to ground(PE)	-	-		Ling(N) to ground(DE)	(N) to ground(PE)		
	Line(IV) to ground(FE)	-	-		Life(IV) to ground(PE)		-	
	Line(L) to line(N)	+1 kV	Complies		Line(L) to line(N)	+1 kV	Complies	
	Line(L) to ine(N)	-1 kV	Complies		Line(L) to line(N)	-1 kV	Complies	
1000		-	-	2700		-	-	
180°	Line(L) to ground(PE)	-	-	270°	Line(L) to ground(PE)	-	-	
		-	-			-	-	
	Line(N) to ground(PE)	-	-		Line(N) to ground(PE)	-	-	

MODE : 1 kHz + Operating mode (Adapter)

MODE : 1 kHz + Operating mode (PoE)

Signal Line	Test level	evel Result Remarks	
PoE	+0.5, 1 kV	Complies	No reaction recognized
	-0.5, 1 kV	Complies	No reaction recognized

3.3.5 Conducted disturbances, induced by radio-frequency fields

Definition:

The test assesses the ability of the EUT to operate as intended in the presence of a radio frequency electromagnetic disturbance on the input/output ports.

We were performed the test according to LTA procedure LTA-QI-04.

Test method	:	EN 61000-4-6:2014
Frequency range	:	0.15 MHz - 100 MHz
Test level	:	10 Vrms unmodulated
Amplitude Modulation	:	AM, 80 %, 1 ^{kHz} Sinusoidal
Step size	:	1 % of fundamental.
Test mode	:	1 kHz + Operating mode (Adapter, PoE)
Result	:	Complies

Measurement Data:

- Uncertainty = \pm -1.25 dB (with a 95 % confidence level, k=2)

MODE : 1 kHz + Operating mode (Adapter)

Port	Test level (Vrms)	Result	Remarks
Power	10	Complies	No reaction recognized

Signal Line	Test level (Vrms)	Result	Remarks
LAN	10	Complies	No reaction recognized

MODE : 1 kHz + Operating mode (PoE)

Signal Line	Test level (Vrms)	Result	Remarks
POE	10	Complies	No reaction recognized

Criteria for compliance:

- There shall be no damage, malfunction or change of status due to the conditioning. Flickering of an indicator during the conditioning is permissible, providing that there is no residual change in the EUT or any change in outputs, which could be interpreted by associated equipment as a change, and no such flickering of indicators occurs at $U_0 = 130$ dBuV.
- For components of CCTV systems, where the status is monitored by observing the TV picture, then deterioration of the picture is allowed at $U_0 = 140 \text{ dBuV}$.
 - a) There is no permanent damage or change to the EUT.
 - b) At $U_0 = 130$ dBuV, any deterioration of the picture is so minor that the system could still be used.
 - c) There is no observable deterioration of the picture at $U_0 = 120 \text{ dBuV}$

3.3.6 Mains supply voltage dips, short interruptions

Definition:

The test assesses the ability of the EUT to operate as intended in the event of voltage dips and interruptions present on

the AC mains power input ports.

We were performed the test according to LTA procedure LTA-QI-04.

Test method	:	EN 61000-4-11:2004
Ut	:	230 Vac
Test mode	:	1 kHz + Operating mode (Adapter)
Result	:	Complies

Measurement Data:

- Uncertainty = ± -5 % (with a 95 % confidence level, k=2)

"It has been demonstrated that the Voltage dips generator meets the specified requirements in the standard with at least 95 % confidence."

Test Level %Ut	Voltage droop and interruptions %Ut	Duration of Reduction (period)	Result	Remarks
80	20	250	EUT OFF During the test.CompliesAutomatic repaly without user's contrAfter the test, EUT was operated norm	
70	30	25	Complies No reaction recognized	
40	60	10	Complies	No reaction recognized
0	100	250	Complies	EUT OFF During the test. Automatic repaly without user's control. After the test, EUT was operated normally.

Criteria for compliance:

- Mains supply voltage variations

There shall be no damage, malfunction or change of status due to the different supply voltage conditions.

- Mains supply voltage dips and short interruptions

There shall be no damage, malfunction or change of status due to the conditioning. Flickering of an indicator during the conditioning is permissible, providing that there is no residual change in the EUT or any change in outputs, which could be interpreted by associated equipment as a change.

During the 250 period power loss, in accordance with the standard, a UPS was used to maintain full operation of the unit.

3.3.7 Mains supply voltage variations

Definition:

The test assesses the ability of the EUT to operate as intended in the event of voltage variations present on the AC mains power input ports.

We were performed the test according to LTA procedure LTA-QI-04.

Test method	:	EN 50130-4 Clause 7
Supply Voltage maximum	:	<i>U</i> nom + 10 %
Supply Voltage minimum		Unom – 15 %
Ut	:	230 Vac
Test mode	:	1 kHz + Operating mode (Adapter)
Result	:	Complies

Measurement Data:

Unom = Nominal mains voltage. Where provision is made to adapt the equipment to suit a number of nominal supply voltages (e.g. by transformer tap changing), the above conditioning severity shall be applied for each nominal voltage, with the equipment suitably adapted. For equipment which is claimed to be suitable for a range of nominal mains voltages (e.g. 220/240 V) without adaptation, Umax = (Maximum Unom) + 10 %, and Umin = (Minimum Unom) p 15 %. In any case the range of Unom must include the European nominal mains voltage of 230 V.

2 Mains supply voltage variations

230~V / 50~Hz

Test Le	Test LevelCondition		Result	Remarks	
Unom	+10%	253	Complies	No reaction recognized	
Unom	-15%	195.5	Complies	No reaction recognized	

APPENDIX A

TEST EQUIPMENT AND ANCILLARIES USED FOR TESTS

To facilitate inclusion on each page of the test equipment used for related tests, each item of test equipment are identified by the Test Laboratory.

Conducted emissions

	Item	Model Name	Manufacturer	Serial No.	Next Cal.	Interval
\boxtimes	EMI TEST Receiver	ESR	Rohde & Schwarz	101499	2018.07.11	1 year
\boxtimes	Pulse Limiter	ESH3-Z2	Rohde & Schwarz	100710	2018.03.20	1 year
	LISN	ESH3-Z6	Rohde & Schwarz	100378	2018.09.07	1 year
\boxtimes	LISN(main)	ENV216	Rohde & Schwarz	100408	2018.09.07	1 year
\boxtimes	LISN(sub)	KNW-407	Kyoritsu	8-1430-1	2018.09.07	1 year
\boxtimes	TEST PROGRAM	e3_Ver: 5.5.201a	AUDIX	-	-	-
\boxtimes	ISN	ISN T800	TESEQ	27109	2018.01.25	1 year
	ISN	ENY81-CA6	Rohde & Schwarz	101565	2018.01.25	1 year
	CURRENT PROBE	EZ-17	Rohde & Schwarz	100508	2018.01.25	1 year

Radiated Emission – Below 1 GHz

	Item	Model Name	Manufacturer	Serial No.	Next Cal.	Interval
\square	EMI TEST Receiver	ESCI7	Rohde & Schwarz	100772	2018.09.07	1 year
\square	Amplifier (25 dB)	8447D	HP	2944A07974	2018.09.07	1 year
\square	TRILOG Antenna	VULB9160	SCHWARZBECK	9160-3237	2019.05.16	2 year
\boxtimes	TEST PROGRAM	e3_Ver: 6.2009- 10-12a	AUDIX	-	-	-

Radiated Emission – Above 1 GHz

	Item	Model Name	Manufacturer	Serial No.	Next Cal.	Interval
\boxtimes	EMI TEST Receiver	ESCI7	Rohde & Schwarz	100772	2018.09.07	1 year
\boxtimes	Amplifier (25 dB)	8449B	HP	3008A00337	2018.03.20	1 year
\square	HORN ANTENNA	3115	ETS	00055005	2019.05.16	2 year
	TEST PROGRAM	e3_Ver: 6.2009- 10-12a	AUDIX	-	-	-

Harmonic Current / Voltage Variation and Flicking

	Item	Model Name	Manufacturer	Serial No.	Next Cal.	Interval
\boxtimes	Precision Power Analyzer	PPA551	Newtons4th Ltd	162-04957	2018.09.18	1 year
\boxtimes	Reference Impedance Network	ES4152	NF Corp.	9074424	2018.09.07	1 year

Electrostatic Discharge

	Item	Model Name	Manufacturer	Serial No.	Next Cal.	Interval
\square	ESD Slimulator	ESS-2000	NOISEKEN	ESS0625187	2018.04.04	1 year

RF Electromagnetic Field

	Item	Model Name	Manufacturer	Serial No.	Next Cal.	Interval
\square	Signal Generator	E4432B	Agilent	MY41310632	2018.05.22	1 year
\square	Power Meter	E4419B	Agilent	GB38410133	2018.06.09	1 year
\boxtimes	RF POWER AMPLIFIER	ITA0300KL-300	INFINITECH	0300KL 1507 001	-	-
\boxtimes	RF POWER AMPLIFIER	ITA2000KL-120	INFINITECH	200KL 1507 001	-	-
\square	RF POWER AMPLIFIER	ITA4500KL-70	INFINITECH	4500KL 1507 001	-	-
	RF POWER AMPLIFIER	ITA0750KL-300	INFINITECH	0750KL 1507 001	-	-
\boxtimes	LogPer.Antenna (80 MHz ~ 3 GHz)	K9128	RAPA	NONE	-	-
	Microphone	MP201	BSWA	530147	2017.11.25	1 year
	Sound Acoustic Tester	TST-1000	TESTEK	15065-A	2017.11.28	1 year

Electrical fast transients

	Item	Model Name	Manufacturer	Serial No.	Next Cal.	Interval	
\square	Compact Generator	NX5	EMTEST	P1640185038	2018.03.21	1 year	
	AC Power Source	Variac NX1-260- 16	EMTEST	P1648188071	2018.03.21	1 year	
	Capacitive Coupling Clamp	CCI	EMTEST	P1703190739	2018.03.21	1 year	

Surge

	Item	Model Name	Manufacturer	Serial No.	Next Cal.	Interval
\square	Compact Generator	NX5	EMTEST	P1640185038	2018.03.21	1 year
	AC Power Source	Variac NX1-260- 16	EMTEST	P1648188071	2018.03.21	1 year
	Capacitive Coupling Clamp	CCI	EMTEST	P1703190739	2018.03.21	1 year
\square	CDN	CNV508N1	EMTEST	P1623180335	2018.03.21	1 year

	Item	Model Name	Manufacturer	Serial No.	Next Cal.	Interval
\boxtimes	Signal generator	SML03	R&S	103026/0013	2018.03.20	1 year
\square	POWER METER	NRVD	R&S	101689	2018.03.20	1 year
\square	RF Power Amplifier	FLL75A	FRANKONIA	1033	-	-
	Sound Acoustic Tester	TST-1000	TESTEK	15065-A	2017.11.28	1 year
	Microphone	MP201	BSWA	530147	2017.11.25	1 year
\boxtimes	EM INJECTION CLAMP	TSIC-23	F.C.C	529	2018.06.12	1 year
	CDN (M1)	TSCDN-M1-16A	F.C.C	07004	2018.09.07	1 year
\square	CDN (M2)	TSCDN-M2-16A	F.C.C	07008	2018.09.07	1 year
\square	CDN (M3)	TSCDN-M3-16A	F.C.C	07017	2018.09.07	1 year

Conducted disturbances, induced by radio-frequency fields

Mains supply voltage dips, short interruptions

	Item	Model Name	Manufacturer	Serial No.	Next Cal.	Interval
\square	Compact Generator	NX5	EMTEST	P1640185038	2018.03.21	1 year
\boxtimes	AC Power Source	Variac NX1-260- 16	EMTEST	P1648188071	2018.03.21	1 year

Mains supply voltage variations

	Item	Model Name	Manufacturer	Serial No.	Next Cal.	Interval
\square	Compact Generator	NX5	EMTEST	P1640185038	2018.03.21	1 year
\boxtimes	AC Power Source	Variac NX1-260- 16	EMTEST	P1648188071	2018.03.21	1 year

APPENDIX B

PERFORMANCE CRITERIA

Performance criteria

The variety and the diversity of the apparatus within the scope of this document makes it difficult to define precise criteria for the evaluation of the immunity test results.

If as a result of the application of the tests defined in this standard, the apparatus becomes dangerous or unsafe then the apparatus shall be deemed to have failed the test.

A functional description and a definition of performance by the manufacture and noted in the test report, based on the following criteria:

Electrostatic discharge

There shall be no damage, malfunction or change of status due to the conditioning.

Flickering of an indicator during the application of discharge is permissible, providing that there is no residual change in the EUT or any change in outputs, which could be interpreted by associated equipment as a change. The EUT shall meet the acceptance criteria for the functional test (see Clause 6), after the conditioning.

Radiated electromagnetic fields

There shall be no damage, malfunction or change of status due to the conditioning.

Flickering of an indicator during the conditioning is permissible, providing that there is no residual change in the EUT or any change in outputs, which could be interpreted by associated equipment as a change, and no such flickering of indicators occurs at a field strength of 3 V/m.

For components of CCTV systems, where the status is monitored by observing the TV picture, then deterioration of the picture is allowed at 10 V/m, providing.

(a) there is no permanent damage or change to the EUT

(e.g. no corruption of memory or changes to programmable setting etc.)

(b) at 3 V/m, any deterioration of the picture is so minor that the system could still be used; and (c) there is no observable deterioration of the picture at 1 V/m.

The EUT shall meet the acceptance criteria for the functional test(see Clause 6), after the conditioning.

Fast transient burst / slow high energy voltage surge

There shall be no damage, malfunction or change of status due to the conditioning.

Flickering of an indicator during the application of the bursts is permissible, providing that there is no residual change in the EUT or any change in outputs, which could be interpreted by associated equipment as a change. The EUT shall meet the acceptance criteria for the functional test (see Clause 6), after the conditioning.

Slow high energy voltage surge

There shall be no damage, malfunction or change of status due to the conditioning.

Flickering of an indicator during the application of the surges is permissible, providing that there is no residual change in the EUT or any change in outputs, which could be interpreted by associated equipment as a change. The EUT shall meet the acceptance criteria for the functional test (see Clause 6), after the conditioning.

Conducted RF immunity

There shall be no damage, malfunction or change of status due to the conditioning.

Flickering of an indicator during the conditioning is permissible, providing that there is no residual change in the EUT or any change in outputs, which could be interpreted by associated equipment as a change, and no such flickering of indicators occurs at $U0 = 130 \text{ dB}\mu N$.

For components of CCTV systems, where the status is monitored by observing the TV picture, then deterioration of the picture is allowed at $U0 = 140 \text{ dB}\mu\text{V}$, providing

(a) there is no permanent damage or change to the EUT

(e.g. no corruption of memory or changes to programmable settings, etc.)

(b) at U0 = 130 dBµV, any deterioration of the picture is so minor that the system could still be used, and

(c) there is no observable deterioration of the picture at $U0 = 120 \text{ dB}\mu N$.

The EUT shall meet the acceptance criteria for the functional test(see Clause 6), after the conditioning.

Voltage dip/interruption / Voltage variation

There shall be no damage, malfunction or change of status due to the conditioning.

Flickering of an indicator during the conditioning is permissible, providing that there is no residual change in the EUT or any change in outputs, which could be interpreted by associated equipment as a change. The EUT shall meet the acceptance criteria for the functional test(see Clause 6), after the conditioning.

Mains supply voltage variations

There shall be no damage, malfunction or change of status due to the different supply voltage conditions. The EUT shall meet the acceptance criteria for the functional test(see Clause 6), during the conditioning.

APPENDIX C

Measurement Uncertainty

- 1. Conducted Emission
- 2. Radiated Emission

1. Conducted Emission

	Duckabilitar	Probability Distribution (dB)	
Input Quantity	Probability Distribution	9 kHz – 30 MHz	Standard
Cable loss(RG400)	Standard Deviation(SD)	± 0.061	10 th measurement
Receiver corrections; -Sine wave voltage -Pulse amplitude response -Pulse repetition rate response	Rectangular ($\sqrt{3}$) Rectangular ($\sqrt{3}$) Rectangular ($\sqrt{3}$)	$\begin{array}{c} \pm \ 0.17 \\ \pm \ 0.02 \\ \pm \ 0.58 \end{array}$	Cal. Report Cal. Report Cal. Report
LISN corrections (ENV216) ; -Voltage division factor	Normal $(k = 2)$	± 0.09	Cal. Report
Mismatch ; - Receiver VRC* : $\Gamma i = 0.09$ -LISN VRC : $\Gamma g = 0.14(150 \text{kHz})$ = 0.05(30MHz) - Uncertainty: 20log(1± $\Gamma i \Gamma g$)	U-type(√ 2)	± 0.89	Cal. Report
System Repeatability	Standard Deviation(SD)	± 0.28	10 th measurement
Combined measurement uncertainty Uc(y)	Normal	+ 0.73 - 0.73	
Expended measurement uncertainty (95.%,Confidence level,k = 2)dB	Normal($k = 2$)	+ 1.46 - 1.46	

2. Below 1 GHz Radiated Emission

		Probability Di	stribution (dB)	
Input Quantity	Probability Distribution	Tri	log	Standard
		3m	10m	
Antenna Factor		30 MHz – 1 GHz	30 MHz – 1 GHz	ANT Cal.
(VULB 9160)	Normal $(k = 2)$	± 2.00	± 2.00	uncertainty
Cable loss (HFB-5010/HFC12D)	Standard Deviation(SD)	± 0.14	± 0.14	10 th measurement
Receiver corrections; -Sine Wave Voltage	Normal $(k = 2)$	± 0.17	± 0.17	Cal. Report
-Pulse amplitude response	Normal $(k = 2)$	± 0.17 ± 0.58	± 0.17 ± 0.58	Cal. Report
-Pulse repetition rate response	Rectangular($\sqrt{3}$)	± 1.50	± 1.50	CISPR16-4-2
Antenna Directivity	Rectangular($\sqrt{3}$)	± 1.00	± 1.00	CISPR16-4-2
AF Height Dependence	Rectangular($\sqrt{3}$)	± 0.10	± 0.10	CISPR16-4-2
Phase Center Location	Rectangular($\sqrt{3}$)	± 0.20	± 0.20	CISPR16-4-2
Separation Distance	Rectangular($\sqrt{3}$)	± 0.30	± 0.30	CISPR16-4-2
Uncertainty of Site	Triangular($\sqrt{6}$)	± 2.97	± 2.97	NSA
Mismatch ; - Receiver VRC* : $\Gamma i = 0.09$ -ANT. VRC : $\Gamma g = 0.09$ - Uncertainty: 20log(1± $\Gamma i \Gamma g$)	U-type ($\sqrt{2}$)	± 0.54	± 0.54	CISPR16-4-2
Pre-amp.	Normal $(k = 2)$	± 0.14	± 0.14	Cal. Report
System Repeatability	Standard Deviation(SD)	± 0.60	± 0.60	10 th measurement
Combined measurement uncertainty Uc(y)	Normal	+ 1.97 - 1.97	+ 1.97 - 1.97	
Expended measurement uncertainty (95%,Confidence level,k=2)dB	Normal $(k = 2)$	30 MHz – 1 GHz + 3.94 - 3.94	30 MHz – 1 GHz + 3.94 - 3.94	

Note:VRC(Voltage Reflection Coefficient)

3. Above 1 GHz Radiated Emission

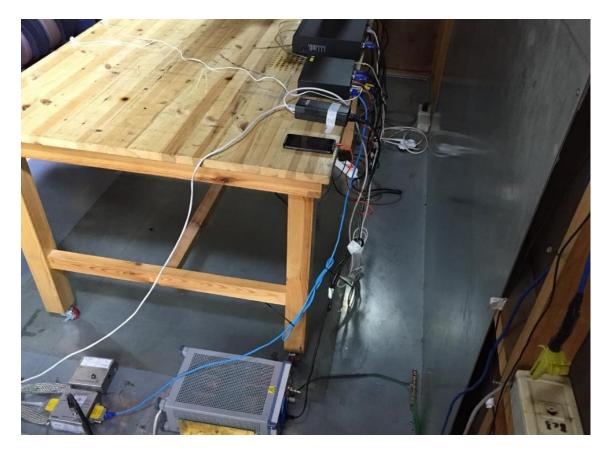
		Probability Distribution (dB)	
Input Quantity	Probability Distribution	HORN	Standard
Antenna Factor (ETS 3115)	Normal (k=2) (normal)	1 GHz - 6 GHz ± 1.00	ANT Cal. uncertainty
Cable loss (SUHNER MULTIFLEX microwave cables)	Standard Deviation(SD)	± 0.32	10 th measurement
Receiver corrections; -Sine Wave Voltage -Pulse amplitude response -Pulse repetition rate response	Normal (k = 2) Normal (k = 2) Rectangular($\sqrt{3}$)	${\scriptstyle \pm \ 0.17} \ {\scriptstyle \pm \ 0.58} \ {\scriptstyle \pm \ 1.50}$	Cal. Report Cal. Report CISPR16-4-2
Antenna Directivity	Rectangular($\sqrt{3}$)	± 1.00	CISPR16-4-2
AF Height Dependence	Rectangular($\sqrt{3}$)	± 0.10	CISPR16-4-2
Phase Center Location	Rectangular($\sqrt{3}$)	± 0.20	CISPR16-4-2
Separation Distance	Rectangular($\sqrt{3}$)	± 0.30	CISPR16-4-2
Uncertainty of Site	Standard Deviation(SD)	± 0.13	SVSWR 10 th measurement
Mismatch ; - Receiver VRC* : $\Gamma i = 0.09$ -ANT. VRC : $\Gamma g = 0.09$ - Uncertainty: $20\log(1\pm\Gamma i \Gamma g)$	U-type ($\sqrt{2}$)	± 0.54	CISPR16-4-2
Pre-amp.	Normal $(k = 2)$	± 0.60	Cal. Report
System Repeatability	Standard Deviation(SD)	± 0.34	10 th measurement
Combined measurement uncertainty Uc(y)	Normal	+ 1.73 - 1.73	
Expended measurement uncertainty (95%,Confidence level,k=2)dB	Normal(k = 2)	1 GHz - 6 GHz + 3.46 - 3.46	

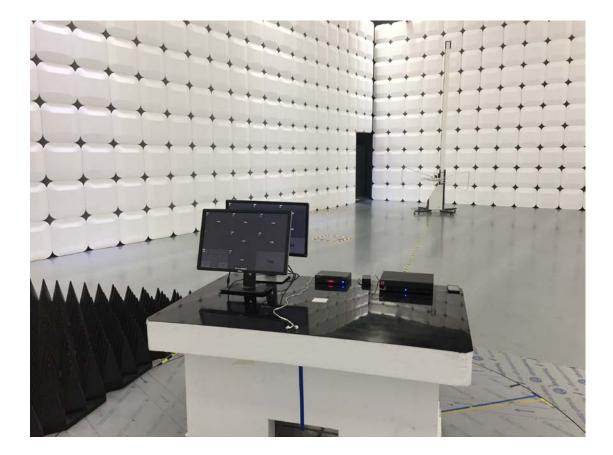
Note:VRC(Voltage Reflection Coefficient)

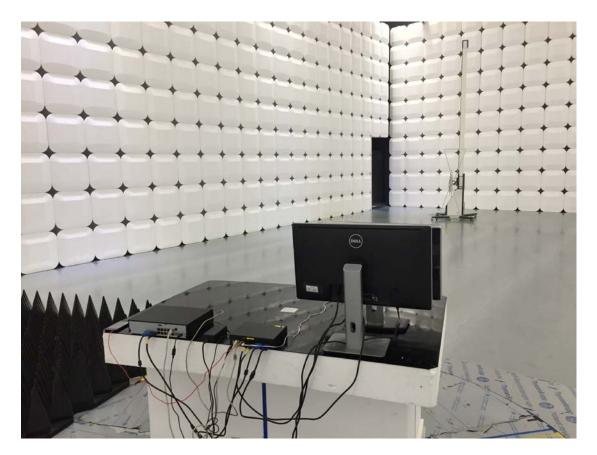
APPENDIX D

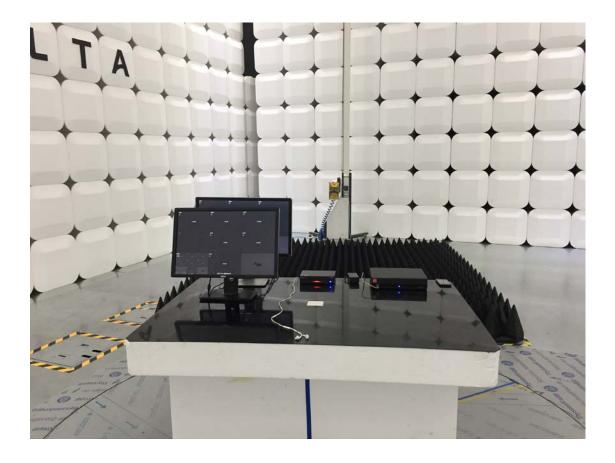
PHOTOGRAPHS

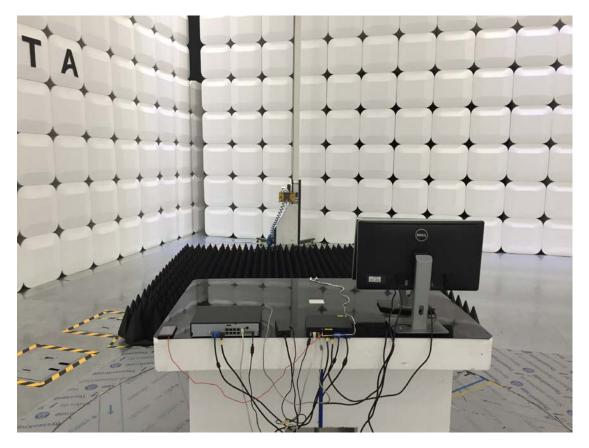
Conducted emission (Maximum emission configuration) / 1 kHz + Operating mode (Adapter)


Conducted emission (Maximum emission configuration) / TEL _ 1 kHz + Operating mode (Adapter)



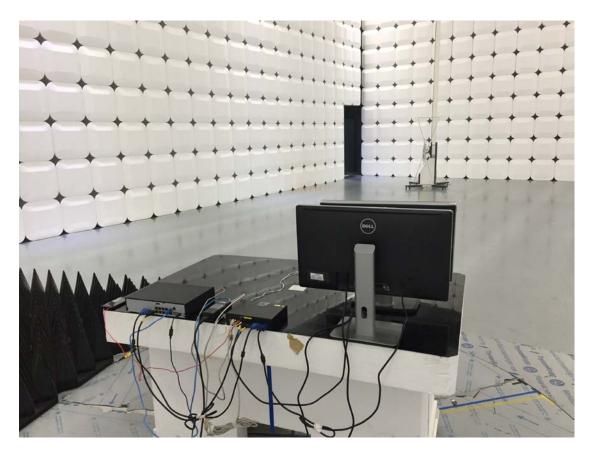

Conducted emission (Maximum emission configuration) / TEL _ 1 kHz + Operating mode (PoE)


Radiated emission (Maximum emission configuration)-Below 1 GHz / 1 kHz + Operating mode (Adapter)

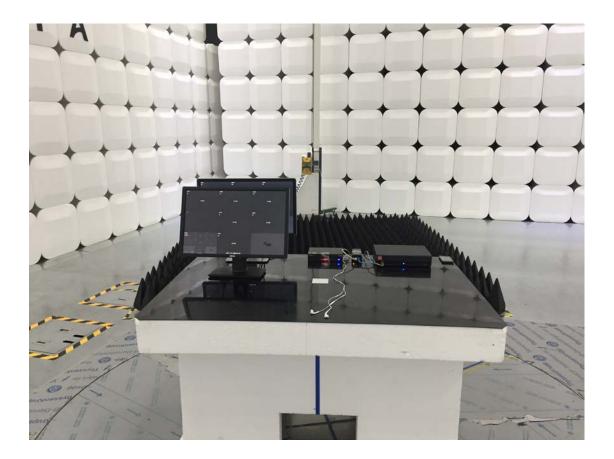


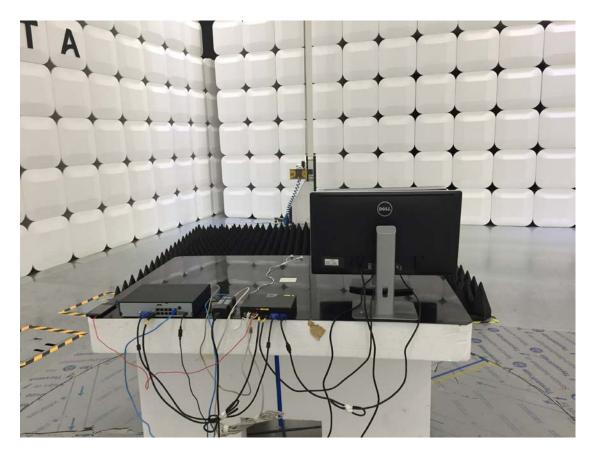
Copyright © 2017, LTA Co., Ltd.

Radiated emission (Maximum emission configuration)-Above 1 GHz / 1 kHz + Operating mode (Adapter)



Copyright © 2017, LTA Co., Ltd.

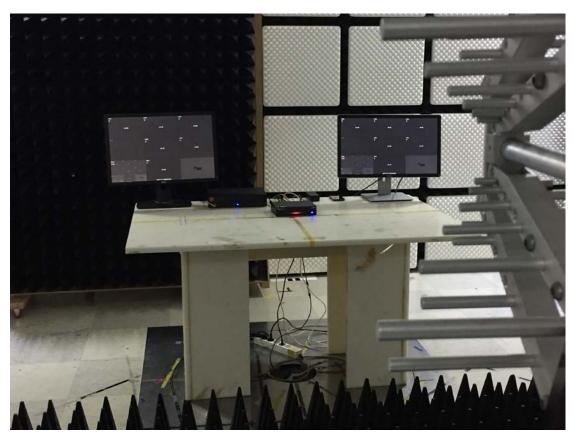

Radiated emission (Maximum emission configuration)-Below 1 GHz / 1 kHz + Operating mode (PoE)



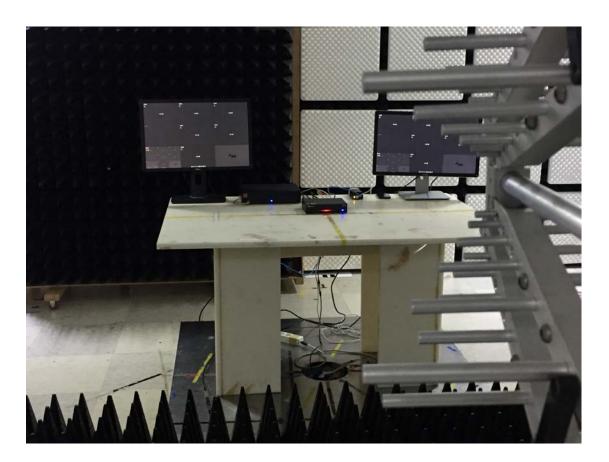
Copyright © 2017, LTA Co., Ltd.

Radiated emission (Maximum emission configuration)-Above 1 GHz / 1 kHz + Operating mode (PoE)

Copyright © 2017, LTA Co., Ltd.


Harmonic Current / 1 kHz + Operating mode (Adapter)

Electrostatic discharge / 1 kHz + Operating mode (Adapter)


Electrostatic discharge / 1 kHz + Operating mode (PoE)

RF Electromagnetic Field / 1 kHz + Operating mode (Adapter)

RF Electromagnetic Field / 1 kHz + Operating mode (PoE)

Electrical fast transients / 1 kHz + Operating mode (Adapter)

Electrical fast transients / 1 kHz + Operating mode (PoE)

Surge / 1 kHz + Operating mode (Adapter)

Surge / 1 kHz + Operating mode (PoE)

Conducted Disturbances, Induced by Radio-Frequency Fields / 1 kHz + Operating mode (Adapter)

Conducted Disturbances, Induced by Radio-Frequency Fields / 1 kHz + Operating mode (PoE)

Main supply voltage dips, short interruptions / 1 kHz + Operating mode (Adapter)

